В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
МаксVFRCBV
МаксVFRCBV
24.10.2021 18:04 •  Алгебра

Log(3-2x) по основанию (x^2) < 1 с !

Показать ответ
Ответ:
Webymnyaha
Webymnyaha
04.10.2020 14:59
log_{x^2}(3-2x)\ \textless \ 1\; ,\\\\ODZ:\; 3-2x\ \textgreater \ 0\; \to \; \; x\ \textless \ 1,5\; ;\\x^2\ne 1,\; x^2\ \textgreater \ 0\; \to \; \; x\ne \pm 1\\\\x\in (-\infty ,-1)\cup (-1,1)\cup (1;\; 1,5)

Метод рационализации: неравенство  log_{h(x)}\, f(x)\vee1   заменяем
на неравенство   (h(x)-1)(f(x)-h(x))\vee 0  , где \vee  знак неравенства. 

(x^2-1)(3-2x-x^2)\ \textless \ 0\\\\x^2+2x-3=0\; \; \to \; \; x_1=-3,\; x_2=1\\\\(x-1)(x+1)(x+3)(x-1)\ \textless \ 0\\\\(x-1)^2(x+1)(x+3)\ \textless \ 0\\\\+++(-3)---(-1)+++(1)+++\\\\x\in (-3,-1)\\\\ \left \{ {{x\in (-\infty ,-1)\cup (-1,1)\cup (1;\; 1,5)} \atop {x\in (-3,-1)}} \right. \; \; \to \\\\Otvet:\; \; x\in (-3,-1)\; .
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота