В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ivanovali0109
ivanovali0109
16.11.2022 09:51 •  Алгебра

Log3(x^2-5x+4)-log3(x-4) 2log5(x-4)=(3x-2)

Показать ответ
Ответ:
zhekabigboss
zhekabigboss
06.07.2021 08:08
1)log_5(3x-2)2
   log_5(3x-2)2\cdot log_55 \\ log_5(3x-2) log_55 ^{2} \\ log_5(3x-2) log_525
Логарифмическая функция с основанием 5>1 возрастающая. Поэтому большему значению функции соответствует большее значение аргумента. С учетом ОДЗ неравенства получаем систему:
\left \{ {{3x-20} \atop {3x-225}} \right.
3x-2>25
3x>27
x>9
ответ. (9; +∞)
2)log_{\frac{1}{2}}(4x+2)
   log_{\frac{1}{2}}(4x+2)
Логарифмическая функция с основанием  0<1/2<1 убывающая. Большему значению функции соответствует меньшее значение аргумента. С учетом ОДЗ неравенства получаем систему:
\left \{ {{4x+20} \atop {4x+28}} \right.
4х+2>8
4x>8-2
4x>6
x>1,5
ответ. (1,5; +∞)
3)log_{\frac{1}{2}}(1-2x) \geq - 2
   log_{\frac{1}{2}}(1-2x) \geq - 2\cdot log_{\frac{1}{2}}\frac{1}{2} &#10;\\log_{\frac{1}{2}}(1-2x)\geqlog_{\frac{1}{2}}\frac{1}{2}^{-2} \\ &#10;log_{\frac{1}{2}}(1-2x)\geqlog_{\frac{1}{2}}4
Логарифмическая функция с основанием  0<1/2<1 убывающая. Большему значению функции соответствует меньшее значение аргумента. С учетом ОДЗ неравенства получаем систему:
\left \{ {{1-2x0} \atop {1-2x\geq4}} \right.
\left \{ {{-2x-1} \atop {-2x\leq4-1}} \right. \\ \left \{ {{x
ответ. [-1,5; 0,5)
4)Находим ОДЗ:
\left \{ {{4x+10} \atop {3x-90}} \right. \Rightarrow x3
Логарифмическая функция с основанием 3>1- возрастающая. Поэтому большему значению функции соответствует большее значение аргумента. С учетом ОДЗ неравенства получаем систему:
\left \{ {{x3} \atop {4x+13} \atop {4x-3x3} \atop {x
Система не имеет решений
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
-----------------------------(-10)------------(3)------------
                                                           ////////////////////////
множества не пересекаются
0,0(0 оценок)
Ответ:
НастЮхАforever
НастЮхАforever
27.11.2022 09:35

(см. объяснение)

Объяснение:

Первый :

|2x+1|=x+a\\|2x+1|-x-a=0

Рассмотрим функцию f(x)=|2x+1|-x-a.

Тогда уравнение примет вид f(x)=0.

Заметим, что решающую роль на поведение функции (ее возрастание или убывание) всегда оказывает знак при 2x. Тогда функция убывает на промежутке \left(-\infty;\;-\dfrac{1}{2}\right], а возрастает на \left[-\dfrac{1}{2};\;+\infty\right). Значит единственное решение достигается тогда и только тогда, когда f\left(\dfrac{1}{2}\right)=0.

Получили уравнение:

\left|2\times\dfrac{1}{2}+1\right|-\dfrac{1}{2}-a=0\\a=\dfrac{1}{2}

Итого при a=\dfrac{1}{2} исходное уравнение имеет единственное решение.

Второй :

|2x+1|=x+a\\a=|2x+1|-x

Построим график этого уравнения в координатах (x;\,a):

(см. прикрепленный файл)

Тогда ответом будет a=\dfrac{1}{2}.

Третий :

|2x+1|=x+a

Знаем, что при a\ge0:

|f(x)|=a,\;\;\left[\begin{array}{c}f(x)=a\\f(x)=-a\end{array}\right;

Тогда единственное решение возможно, только если x+a=0.

Получили уравнение:

|2x+1|=0\\2x+1=0\\x=-\dfrac{1}{2}

Так как x+a=0,\;=\;a=-x,\;=a=\dfrac{1}{2}.

Задание выполнено!


Найдите все значения a, такие, что уравнение |2x+1|=x+a имеет единственное решение.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота