Пусть скорость катера - х км/час. Тогда по течению реки катер плыл со скоростью (х+2) км/час, а против течения со скоростью (х-2) км/час .Время, затраченное на путь по течению будет 80/(х+2) часов, а против течения 80/(х-2) час. Зная, что весь путь занял 9 часов, составим уравнение: 80/(х+2)+80/(х-2)=9 80(х-2)+80(х+2)=9(х2-4) 80х-160+80х+160=9х2-36 9х2-160х-36=0 Решаем квадратное уравнение. х1=-4/18=-2/9 - не удовлетворяет условию задачи х2=18км/ч- скорость катера ответ: скорость катера 18км/ч ас
Всего "четвёрок" может быть 5, 10, 15, 20, 25, 30.
Известно, что "троек" больше, чем четвёрок и пятёрок, значит, троек не может быть больше 21, а "четвёрок" не может быть больше 10 (в противном случае оценок будет больше 30).
Пусть x "пятёрок", y "четвёрок", z "двоек":
1) "троек" 7, тогда сумма оценок
7*3+5x+4y+2z = 90
5x+4y+2z = 69
Очевидно, что из слагаемых 2, 4 и 5 невозможно получить сумму 69.
2) "троек" 14, тогда сумма оценок
14*3+5x+4y+2z = 90
5x+4y+2z = 48
48 можно получить путём сложения цифр 2, 4 и 5.
Пусть "четвёрок" 5, тогда сумма оценок
5x+4*5+2z = 48
5x+2z = 28
То есть нужно разделить сумму 28 между (30-14-5) = 11 "двойками" и "пятёрками", или
Пусть скорость катера - х км/час. Тогда по течению реки катер плыл со скоростью (х+2) км/час, а против течения со скоростью (х-2) км/час .Время, затраченное на путь по течению будет 80/(х+2) часов, а против течения 80/(х-2) час. Зная, что весь путь занял 9 часов, составим уравнение:
80/(х+2)+80/(х-2)=9
80(х-2)+80(х+2)=9(х2-4)
80х-160+80х+160=9х2-36
9х2-160х-36=0
Решаем квадратное уравнение.
х1=-4/18=-2/9 - не удовлетворяет условию задачи
х2=18км/ч- скорость катера
ответ: скорость катера 18км/ч ас
Всего "троек" может быть 7, 14, 21 и 28.
Всего "четвёрок" может быть 5, 10, 15, 20, 25, 30.
Известно, что "троек" больше, чем четвёрок и пятёрок, значит, троек не может быть больше 21, а "четвёрок" не может быть больше 10 (в противном случае оценок будет больше 30).
Пусть x "пятёрок", y "четвёрок", z "двоек":
1) "троек" 7, тогда сумма оценок
7*3+5x+4y+2z = 90
5x+4y+2z = 69
Очевидно, что из слагаемых 2, 4 и 5 невозможно получить сумму 69.
2) "троек" 14, тогда сумма оценок
14*3+5x+4y+2z = 90
5x+4y+2z = 48
48 можно получить путём сложения цифр 2, 4 и 5.
Пусть "четвёрок" 5, тогда сумма оценок
5x+4*5+2z = 48
5x+2z = 28
То есть нужно разделить сумму 28 между (30-14-5) = 11 "двойками" и "пятёрками", или
Итого получаем:
"пятёрок" - 2
"четвёрок" - 5
"троек" - 14
"двоек" - 9