В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
gmagima
gmagima
22.10.2022 23:40 •  Алгебра

Логарифмическое неравенство. \sf 2\log_2^2(\sin x)+3\log _2(\sin x)-2\geq 0

Показать ответ
Ответ:
Catia2006
Catia2006
10.10.2020 02:18

2log_2^2(sinx)+3log_2(sinx)-2\geq 0\; \; ,\; \; \; ODZ:\; sinx0\\\\t=log+2(sinx)\; \; ,\; \; 2t^2+3-2\geq 0\; ,\; \; t_1=-2\; ,\; t_2=\frac{1}{2}\\\\2(t+2)(t-\frac{1}{2})\geq 0\; \; ,\; \; \; +++[-2\, ]---[\frac{1}{2}\, ]+++\\\\t\in (-\infty ,-2\, ]\cup [\, \frac{1}{2},+\infty )\\\\\left [ {{log_2(sinx)\leq -2} \atop {log_2(sinx)\geq \frac{1}{2}}} \right. \; \left [ {{sinx\leq 2^{-2}} \atop {sinx\geq \sqrt2}} \right. \; \left [ {{sinx\leq \frac{1}{4}} \atop {x\in \varnothing }} \right. \; \; \to\; \; \; 0

x\in (2\pi n\, ;\, arcsin\frac{1}{4}+2\pi n\, ]\cup [\, \pi -arcsin\frac{1}{4}+2\pi n\, ;\, \pi +2\pi n\, )


Логарифмическое неравенство. <img src=" />
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота