Локатор обнаружил летящий к планете астероид и подал сигнал бедствия. Через 2 ч система обороны получила сигнал, и ракета тотчас полетела с поверхности планеты навстречу астероиду, чтобы разбить его. На каком расстоянии от планеты астероид был разбит, если скорость ракеты 120 км/ч, скорость астероида 75 км/ч, расстояние от астероида до планеты в момент обнаружения его локатором 657 км? (ответ округли до десятых.) !
Пусть собственная скорость лодки х км\час, тогда скорость по течению х+2 км\час, а против течения х-2 км\час. За 7 часов по течению лодка х+2) км, за 3 часа против течения 3*(х-2) км, что в сумме составляет 138 км. Имеем уравнение:
7(х+2) + 3(х-2) = 138
7х+14+3х-6=138
10х=130
х=13.
ответ: 13 км\час.
№3
Пусть первая сторона - x, то вторая - x+2, а третья 2x; из этого выводим:
x+x+2+2x=22
x+x+2x=22-2
4x=20
x=5
x+2=7
2x=10
ответ: первая - 5
вторая - 7
третья - 10
№3
Пусть на второй полке было - х книг, тогда на первой было - 3х книг; после того как книги переставили на второй полке стало книг - х+32, а на первой стало книг - 3х - 32; зная, что книг стало поровну (по условию), выводим уравнение:
если тебе не сложно поставь 5-ку и кликни лайк
№2
Пусть собственная скорость лодки х км\час, тогда скорость по течению х+2 км\час, а против течения х-2 км\час. За 7 часов по течению лодка х+2) км, за 3 часа против течения 3*(х-2) км, что в сумме составляет 138 км. Имеем уравнение:
7(х+2) + 3(х-2) = 138
7х+14+3х-6=138
10х=130
х=13.
ответ: 13 км\час.
№3
Пусть первая сторона - x, то вторая - x+2, а третья 2x; из этого выводим:
x+x+2+2x=22
x+x+2x=22-2
4x=20
x=5
x+2=7
2x=10
ответ: первая - 5
вторая - 7
третья - 10
№3
Пусть на второй полке было - х книг, тогда на первой было - 3х книг; после того как книги переставили на второй полке стало книг - х+32, а на первой стало книг - 3х - 32; зная, что книг стало поровну (по условию), выводим уравнение:
3х-32=х+32
3х-х=32+32
2х=64
х=32 книги на второй полке
32*3=96 книг на первой полке
ответ:96 книг на первой полке,
32 книги на второй полке
Объяснение:
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .