Допустим, в стае 1 сороконожка. Тогда на драконов приходится 25 голов. 25 на 3 не делится. возможно, в стае были 2 сороконожки. Тогда на долю драконов приходится 24 головы. 24:3=8. Значит всего драконов будет 8. Если у двух сороконожек 80 ног, значит у восьми драконов будет 298-80=218. Но тут 218 не делится на 8. Немного перескочим на несколько сороконожек, что бы не занимать много времени. Пять сороконожек? Тогда будет у драконов 21 голова. 21:3=7. Получается в стае 7 драконов. У них вместе 298-5х40=98 ног. 98:7=14. Получается, что у дракона 14 ног.
Рассмотрим следующие уравнения: 1. 2*x + 3*y = 15; 2. x2 + y2 = 4; 3. x*y = -1; 4. 5*x3 + y2 = 8. Каждое из представленных выше уравнений является уравнением с двумя переменными. Множество точек координатной плоскости, координаты которых обращают уравнение в верное числовое равенство, называется графиком уравнения с двумя неизвестными. График уравнения с двумя переменными Уравнения с двумя переменными имеют большое многообразие графиков. Например, для уравнения 2*x + 3*y = 15 графиком будет прямая линия, для уравнения x2 + y2 = 4 графиком будет являться окружность с радиусом 2, графиком уравнения y*x = 1 будет являться гипербола и т.д. У целых уравнений с двумя переменными тоже существует такое понятие, как степень. Определяется эта степень, так же как для целого уравнения с одной переменной. Для этого приводят уравнение к виду, когда левая часть есть многочлен стандартного вида, а правая – нуль. Это осуществляется путем равносильных преобразований. Графический решения систем уравнения Разберемся, как решать системы уравнений, которые будут состоять из двух уравнений с двумя переменными. Рассмотрим графический решения таких систем. Пример 1. Решить систему уравнений: { x2 + y2 = 25 {y = -x2 + 2*x + 5. Построим графики первого и второго уравнений в одной системе координат. Графиком первого уравнения будет окружность с центром в начале координат и радиусом 5. Графиком второго уравнения будет являться парабола с ветвями, опущенными вниз. Все точки графиков будут удовлетворять каждый своему уравнению. Нам же необходимо найти такие точки, которые будут удовлетворять как первому, так и второму уравнению. Очевидно, что это будут точки, в которых эти два графика пересекаются. Используя наш рисунок находим приблизительные значения координат, в которых эти точки пересекаются. Получаем следующие результаты: A(-2,2;-4,5), B(0;5), C(2,2;4,5), D(4,-3). Значит, наша система уравнений имеет четыре решения. x1 ≈ -2,2; y1 ≈ -4,5; x2 ≈ 0; y2 ≈ 5; x3 ≈ 2,2; y3 ≈ 4,5; x4 ≈ 4,y4 ≈ -3. Если подставить данные значения в уравнения нашей системы, то можно увидеть, что первое и третье решение являются приближенными, а второе и четвертое – точными. Графический метод часто используется, чтобы оценить количество корней и примерные их границы. Решения получаются чаще приближенными, чем точными.
Все точки графиков будут удовлетворять каждый своему уравнению. Нам же необходимо найти такие точки, которые будут удовлетворять как первому, так и второму уравнению. Очевидно, что это будут точки, в которых эти два графика пересекаются. Используя наш рисунок находим приблизительные значения координат, в которых эти точки пересекаются. Получаем следующие результаты: A(-2,2;-4,5), B(0;5), C(2,2;4,5), D(4,-3). Значит, наша система уравнений имеет четыре решения. x1 ≈ -2,2; y1 ≈ -4,5; x2 ≈ 0; y2 ≈ 5; x3 ≈ 2,2; y3 ≈ 4,5; x4 ≈ 4,y4 ≈ -3. Если подставить данные значения в уравнения нашей системы, то можно увидеть, что первое и третье решение являются приближенными, а второе и четвертое – точными. Графический метод часто используется, чтобы оценить количество корней и примерные их границы. Решения получаются чаще приближенными, чем точными.