Люди добрые, можете мне, бездарю в математике, найти в инете контрольную (алгебра и начала анализа 11 класс Никольский) по применению производной Т_Т (на фото другая контроша, других не нашла) буду безмерно благодарна (つ≧▽≦)つ
1. При каких условиях число a> b? Если a-b >0 т.е положительна разность Как это обозначается? a-b >0
2. Покажите знаки строгого и нестрогого неравенств. ≤ ≥
3. Какие свойства числовых неравенств вы знаете?
Если a>b и b>c , то a>c .
Если a>b , то a+c>b+c .
Если a>b и k>0 , то ak>bk .
Если a>b и k<0 , то ak<bk .
4. Что вы понимаете под доказательством неравенства?
Преобразование частей по правилам к очевидному результату
5. Назовите методы доказательства неравенств и раскройте их смысл.
С известным перенести в одну сторону с неизвестным в другую, привести подобные члены и сделать выводы.
6. Что значит решить неравенство? Найти все его решения или установить , что их нет
7. Какие неравенства называются равносильными? которые имеют одни и те же решения.
8. Какие неравенства называются квадратными? неравенство вида ах²+вх+с (≤,≥,>,<)0
9. Объясните решение неравенств методом интервалов. Нужно квадратичный трехчлен представить в виде произведения, найти нули квадратичного трехчлена и определить знак одного из интервалов(потом чередуются)
10. Объясните графический решения квадратных неравенств.
11. Как решаются системы неравенств с одной переменной?
Дан график y = (2/√3)x² + bx + c и условия: KL=KM, ∠LKM=120∘, где L, K и M точки пересечения осей.
Примем координаты корней на оси Ох: х1 и х2.
Координата точки М по у равна коэффициенту с из уравнения.
Из треугольника МОК с учётом угла 180 - 120 = 60 находим соотношение: с = х1*tg60 = x1*√3.
Далее используем равенство KL=KM.
KL=KM = √((х1)² + (x1*√3)²) = √((х1)² + 3(х1)²) = √(4((х1)²) = 2*х1.
Отсюда находим: х2 = х1 + 2х1 = 3х1.
Далее используем теорему Виета для корней.
Для этого надо разделить коэффициенты уравнения на а (2/√3).
Получаем уравнение y = x² +(b/(2/√3))x + c/(2/√3).
Для определения корней правую часть приравняем нулю.
x² +(b/(2/√3))x + c/(2/√3) = 0.
По Виета х1*х2 = c/(2/√3). Заменим с = x1*√3 и х2 = 3х1.
3(х1)² = x1*√3/(2/√3). После сокращения получаем:
х1 = 1/2. Это найден первый корень.
Второй равен 3х1 = 3*(1/2) = 3/2.
ответ: корни равны (1/2) и (3/2).
Объяснение:
1. При каких условиях число a> b? Если a-b >0 т.е положительна разность Как это обозначается? a-b >0
2. Покажите знаки строгого и нестрогого неравенств. ≤ ≥
3. Какие свойства числовых неравенств вы знаете?
Если a>b и b>c , то a>c .
Если a>b , то a+c>b+c .
Если a>b и k>0 , то ak>bk .
Если a>b и k<0 , то ak<bk .
4. Что вы понимаете под доказательством неравенства?
Преобразование частей по правилам к очевидному результату
5. Назовите методы доказательства неравенств и раскройте их смысл.
С известным перенести в одну сторону с неизвестным в другую, привести подобные члены и сделать выводы.
6. Что значит решить неравенство? Найти все его решения или установить , что их нет
7. Какие неравенства называются равносильными? которые имеют одни и те же решения.
8. Какие неравенства называются квадратными? неравенство вида ах²+вх+с (≤,≥,>,<)0
9. Объясните решение неравенств методом интервалов. Нужно квадратичный трехчлен представить в виде произведения, найти нули квадратичного трехчлена и определить знак одного из интервалов(потом чередуются)
10. Объясните графический решения квадратных неравенств.
11. Как решаются системы неравенств с одной переменной?