Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2x
Знаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1
Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1
Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).
√(1 + Δх) ≈ 1 + 1/2 Δх
а)
5,01² = (5·1,002)² = 5²·1,002² = 25·(1 + 0,002)²≈25·(1 + 2·0,002)=
=25·1,004 = 25,1
б)7,98² = (7· 1,14)² = 7²·1,14² = 49·(1 + 0,14)² ≈ 49·(1 + 2·0,14) =
= 49·1 +0,28 = 49·1,28=62,72
в)2,99³ = (2·1,495)³ = 2³·1,495³ = 8·(1 + 0,495)³ ≈8·(1 + 3·0,495) =
=8·(1 + 1,485) = 8·2,485 = 19,88
г) √24,1 = √(25·0,884) = 5√0,884=5√(1 - 0,116)≈5·(1 + 1/2·(-0,116))=5·(1 - 0,058) = 5·0,942 = 4,71
д) √35,98 ≈ √36· 0,997 = 6√0.997=6√(1 - 0,003) ≈
≈6·(1 + 1/2·(-0,003)) = 6(1 - 0,0015) = 6·0,9985= 5,991
ж)1,01^20=(1 + 0,01)^20 ≈ 1 + 20·0,01 = 1 + 0,2 = 1,2
з) 0,98^20 = (1 - 0,02)^20 ≈ 1 -20·0,02 = 1 - 0,4 = 0,6
и) 2,01^10 = (2·1,005)^10=2^10·1,005^10 =
=2^10·(1 +0,005)^10≈2^10·(1 + 1/2·0,005) = 1024·1,01=
=1034,24
r)1,99^10=(2 ·0,995)^10 = 2^10·0,995^10 =
=2^10·(1 - 0,005)^10≈2^10·(1 - 1/2·0,005) = 2^10·(1 - 0,01) =
=1024·0,99=1013,43
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2xЗнаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).