В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Zzz111zzz15zz888zz
Zzz111zzz15zz888zz
12.02.2023 17:15 •  Алгебра

M^3+3m^2+5m+3.доказать,что кратно 3.

Показать ответ
Ответ:
zhiglinskaya861
zhiglinskaya861
05.10.2020 00:07
Тут видимо имеются ввиду натуральные m. Достаточно доказать что m³+3m²+5m кратно 3. Тогда и сумма этого выражения и тройки будет кратна 3.
Применим метод мат.индукции:
Для m=1 m³+3m²+5m кратно 3. Докажем, что если выражение кратно 3 для какого то натурального k, то и для k+1 оно тоже будет кратно 3. В самом деле:
(k+1)³+3(k+1)²+5(k+1)=(k+1)[(k+1)²+3(k+1)+5]=(k+1)(k²+5k+9)=k³+5k²+9k+k²+5k+9=k³+3k²+5k+3k²+9k+9=(k³+3k²+5k)+3(k²+3k+3)
Первая скобка делится на 3 по предположению, со второй все ясно, значит их сумма делится на 3.
Из доказанного утверждения и того факта, что при m=1 выражение кратно 3 следует что оно кратно 3 для всех натуральных m. Значит и m³+3m²+5m+3 кратно 3. Что и требовалось.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота