Маємо 10 випробувань, у кожному із яких подія А відбувається із ймовірністю 0.3. Визначити ймовірність появи цієї події:
а) рівно 4 рази;
б) не більше 2-х разів;
в) не менше 9 разів;
г) від 5 до 7 разів.
2. Два рівних за майстерністю шахіста грають матч. Що ймовірніше: виграти 2 партії з 4 чи 3 партії з 6? Нічийні результати не враховуються.
3. Відрізок АВ розділено точкою С у відношенні 2:1. На відрізок АВ кинуто довільно 4 точки. Знайти ймовірність того, що 2 з них попадуть ліворуч від точки С, а інші – праворуч.
4. Пристрій складається з 1000 елементів, що працюють незалежно один від одного. Ймовірність відмови кожного 0,002. Знайти ймовірність відмови:
а) рівно 3-х елементів;
б) не менше 4-х елементів;
в) не більше 5-ти елементів;
г) від 2-х до 4-х разів.
5. Ймовірність появи події А у кожному з 400 випробуваннях р=0,2. Знайти ймовірність того, що ця подія наступить:
а) рівно 85 разів;
б) не більше 85 разів;
в) не менше 75 разів;
г) від 90 до 100 разів.
рівно 85 разів в 400 випробуваннях.
6. Ймовірність того, що деталь виявилася бракованою, р=0,2. Знайти ймовірність того, що серед 400 випадково відібраних деталей бракованих виявиться від 70 до 100 штук.
7. Ймовірність появи події А в кожному з 10000 незалежних випробувань дорівнює 0,75. Знайти ймовірність того, що відносна частота появи події А у цій серії випробувань відхилятиметься за модулем не більше, як на 0,01.
8. Ймовірність появи події А у кожному з незалежних випробувань дорівнює 0,2. Знайти найменше число випробувань n, при якому з ймовірністю 0,99 очікують відхилення відносної частоти від її ймовірності не більше як на 0,05.
ответ:4 км/ч
Объяснение:
Пусть первоначальная скорость поезда будет х км/ч,тогда увеличенная скорость будет х+1 км/ч. Первоначальное запланированное время в пути тогда будет 60/х часов,а ускоренное время будет 60/х+1 часов.Разница между первоначальным и ускоренным временем в пути составляет 3 часа.Составляем уравнение: 60/х - 60/х+1 =3. Решаем: 60(х+1) - 60*х=3(х^2+х) 60х+60-60х=3х^2+3х 3х^2+3х-60=0 D=3^2-4*3*(-60)= 9+720=729 x1= (-3-27 )/2*3=-30/6=-5; х2=(-3+27)/2*3=24/6=4. х1 имеет отрицательное значение,а значит не удовлетворяет условию задачи - скорость поезда не может быть отрицательной ,а х2 положительное число,значит удовлетворяет условию задачи.Следовательно,первоначальная запланированная скорость поезда составляла 4 км/ч.
Из равенства xy = yx следует, что делители чисел x и y одни и те же, то есть То же самое равенство показывает, что a1y = b1x, ..., any = bnx. Пусть для определённости x < y. Тогда из записанных равенств следует, что a1 < b1, ..., an < bn, то есть y = kx, где k – целое число. Подставляя равенство y = kx в исходное равенство xy = yx, получаем xkx = (kx)x, то есть xk–1 = k. По предположению k > 1, а значит, x > 1. Ясно, что 22–1 = 2. Легко также проверить, что если x > 2 или k > 2, то xk–1 > k.
ответ
{2, 4}.