1. Какие из перечисленных фигур планиметрии являются основными?
А) Четырехугольник, треугольник.
Б) Прямая, точка, плоскость.
В) Плоскость, точка, луч,
2. Плоскость может быть задана
А) двумя точками, не лежащими на одной прямой Б) тремя точками
В) тремя точками, не лежащими на одной прямой
3. Две прямые называются пересекающимися, если А) они лежат в одной плоскости и имеют две общие точки.
Б) они лежат в одной плоскости.
В) они лежат в одной плоскости имеют одну общую точку.
4. Если одна из двух параллельных прямых параллельна плоскости, то А) вторая прямая будет лежать в плоскости Б) вторая прямая будет перпендикулярна плоскости
В) вторая прямая будет так же параллельна плоскости .
5. Сколько должно быть общих точек у прямой и плоскости, чтобы она пересекала эту плоскость?
А) одна Б) две В) три
6. Прямая параллельна плоскости, если А) прямая лежит в плоскости Б) прямая, параллельна двум пересекающимся прямым лежащим в
плоскости
В) прямая параллельна какой-либо прямой лежащей в плоскости.
7. Отрезки параллельных прямых заключенные между
параллельными плоскостями А) параллельны Б) параллельны и равны В) равны
8. Поверхность составленная из 4 треугольников называется А) треугольником Б) трапецией В) тетраэдром.
Приравнять неравенство к нулю и решить как квадратное уравнение:
х² - 4х + 3 = 0
D=b²-4ac =16 - 12 = 4 √D=2
х₁=(-b-√D)/2a
х₁=(4 - 2)/2
х₁=2/2
х₁=1;
х₂=(-b+√D)/2a
х₂=(4 + 2)/2
х₂=6/2
х₂=3.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1 и х= 3, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у <= 0 (график ниже оси Ох) при х∈[1; 3].
Неравенство нестрогое, скобки квадратные.
Решение первого неравенства х∈[1; 3].
Решить второе неравенство.
(x + 2)(x + 4)/5x <= 0
Приравнять неравенство к нулю и решить как квадратное уравнение.
(x + 2)(x + 4)/5x = 0
а) (x + 2)(x + 4) = 0
Можно раскрыть скобки и получить квадратное решение, потом найти через дискриминант х₁ и х₂.
А можно взять готовые значения х₁ и х₂ из уравнения:
х₁ = -2; х₂ = -4;
б) 5х = 0
х₃ = 0
Решение второго неравенства х∈(-∞; -4]∪[-2; 0).
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Чертим числовую ось, отмечаем значения -4, -2, 0, 1, 3.
х∈[1; 3] - штриховка вправо от 1 до 3.
х∈(-∞; -4]∪[-2; 0) - штриховка вправо от - бесконечности до -4 и
В объяснении.
Объяснение:
1. Какие из перечисленных фигур планиметрии являются основными?
А) Четырехугольник, треугольник.
Б) Прямая, точка, плоскость.
В) Плоскость, точка, луч,
2. Плоскость может быть задана
А) двумя точками, не лежащими на одной прямой Б) тремя точками
В) тремя точками, не лежащими на одной прямой
3. Две прямые называются пересекающимися, если А) они лежат в одной плоскости и имеют две общие точки.
Б) они лежат в одной плоскости.
В) они лежат в одной плоскости имеют одну общую точку.
4. Если одна из двух параллельных прямых параллельна плоскости, то А) вторая прямая будет лежать в плоскости Б) вторая прямая будет перпендикулярна плоскости
В) вторая прямая будет так же параллельна плоскости .
5. Сколько должно быть общих точек у прямой и плоскости, чтобы она пересекала эту плоскость?
А) одна Б) две В) три
6. Прямая параллельна плоскости, если А) прямая лежит в плоскости Б) прямая, параллельна двум пересекающимся прямым лежащим в
плоскости
В) прямая параллельна какой-либо прямой лежащей в плоскости.
7. Отрезки параллельных прямых заключенные между
параллельными плоскостями А) параллельны Б) параллельны и равны В) равны
8. Поверхность составленная из 4 треугольников называется А) треугольником Б) трапецией В) тетраэдром.
9.Гранью параллелепипеда является
А) прямоугольник Б) треугольник В) параллелограмм.
В решении.
Объяснение:
Решить систему неравенств:
х² - 4х + 3 <= 0
(x + 2)(x + 4)/5x <= 0
Решить первое неравенство.
Приравнять неравенство к нулю и решить как квадратное уравнение:
х² - 4х + 3 = 0
D=b²-4ac =16 - 12 = 4 √D=2
х₁=(-b-√D)/2a
х₁=(4 - 2)/2
х₁=2/2
х₁=1;
х₂=(-b+√D)/2a
х₂=(4 + 2)/2
х₂=6/2
х₂=3.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1 и х= 3, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у <= 0 (график ниже оси Ох) при х∈[1; 3].
Неравенство нестрогое, скобки квадратные.
Решение первого неравенства х∈[1; 3].
Решить второе неравенство.
(x + 2)(x + 4)/5x <= 0
Приравнять неравенство к нулю и решить как квадратное уравнение.
(x + 2)(x + 4)/5x = 0
а) (x + 2)(x + 4) = 0
Можно раскрыть скобки и получить квадратное решение, потом найти через дискриминант х₁ и х₂.
А можно взять готовые значения х₁ и х₂ из уравнения:
х₁ = -2; х₂ = -4;
б) 5х = 0
х₃ = 0
Решение второго неравенства х∈(-∞; -4]∪[-2; 0).
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Чертим числовую ось, отмечаем значения -4, -2, 0, 1, 3.
х∈[1; 3] - штриховка вправо от 1 до 3.
х∈(-∞; -4]∪[-2; 0) - штриховка вправо от - бесконечности до -4 и
от -2 до 0.
Пересечения решений (двойной штриховки) нет.
Следовательно, решений системы неравенств нет.