Мастер делает за один час целое число деталей, большее 18, а ученик — на 10 деталей меньше. Мастер выполняет заказ за целое число часов, а три ученика вместе — на два часа быстрее. Из какого числа деталей состоит заказ? Сросно
Пусть х км/ч - это скорость, с которой ехал велосипедист из пункта А в пункт В Так как длина путь из пункта А в пункт В = 27 километров. Тогда путь из пункста А в пункт В он проехал за 27/х(часов) - потому что на обратном пути велосипедист уменьшил скорость на 3км/ч, следовательно: х-3км/ч - скорость велосипедиста.(потому что обратный путь был короче на 7 километров), то есть он равен: 27-7=20(км), следовательно: 20/(х-3) часов - это он потратил на обратный путь. А по условию на обратный путь он затратил всего 10минут, а это 1/6 часа меньше. Составим уравнение: 27/х-1/6=20/(х-3) Надо обе части умножить на 6х*(х-3) не равное нулю, тоесть х≠0 и х≠3(ЭТО НАМ НЕ ПОДХОДИТ)=> 162*(х-3)-х*(х-3)=120х 162х-486-х2+3х-120=0 Теперь на всё это умножить на (-1) и привести конечно-же подобные слогаемые. х2-45х+486=0 Всё получим мы через теорему Виета: х1+х2=45 х1*х2=486 х1=18 х2=27 Либо через Дискриминант, то будет так. Дискриминант=(-45)2-4*2*486=2025+1944=3969 х1,2=54(плюс/минус)63/4 х1 = 18 х2 = 27 Здесь мы видим, что оба корня нам подходят. Итак велосипедист ехал со скоростью 18 км/ч или со скоростью 27 км/ч из пункта А в пункт В. ответ: 18км/ч, 27км/ч.
x(x+1)/(x+3)(x+1) - 4(x+3) /(x+1)(x+3) = 2
(x(x+1)-4(x+3)) /(x+1)(x+3) = 2
(x²+x-4x-12)/(x+1)(x+3) = 2
(x²-3x-12)/(x²+3x+x+3) = 2
(x²-3x-12)/(x²+4x+3) = 2
(x²-3x-12)/(x²+4x+3) - 2 = 0
(x²-3x-12)/(x²+4x+3) - 2*(x²+4x+3)/(x²+4x+3) = 0
(x²-3x-12)/(x²+4x+3) - (2x²+8x+6)/(x²+4x+3) = 0
(x²-3x-12)-(2x²+8x+6) /(x²+4x+3) = 0
(x²-3x-12-2x²-8x-6)/(x²+4x+3) = 0
(-x²-11x-18)/(x²+4x+3) = 0 |*(x²+4x+3) ОДЗ: (x²+4x+3)≠0
(-x²-11x-18)*(x²+4x+3) = 0
-x²-11x-18=0 |*(-1)
x²+11x+18=0
D=121-72= 49
x1,2 = (-11±7)/2
x1= -2 x2= -9 ⇒ -2 - наименьший корень уравнения