1) В одной и той же системе координат постройте графики
функций y = x^2, y = x^3 и y = 3x + 2.
а) у = х²;
График - классическая парабола с центром в начале координат, ветви направлены вверх.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 9 4 1 0 1 4 9
По вычисленным точкам построить параболу.
б) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
в) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Таблица:
х -1 0 1
у -1 2 5
По вычисленным точкам построить прямую.
2) Решите графически уравнение x^3 = 3x + 2.
у = х³; у = 3х + 2;
Построить графики функций и найти координаты точек их пересечения.
а) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
б) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
В решении.
Объяснение:
1) В одной и той же системе координат постройте графики
функций y = x^2, y = x^3 и y = 3x + 2.
а) у = х²;
График - классическая парабола с центром в начале координат, ветви направлены вверх.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 9 4 1 0 1 4 9
По вычисленным точкам построить параболу.
б) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
в) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Таблица:
х -1 0 1
у -1 2 5
По вычисленным точкам построить прямую.
2) Решите графически уравнение x^3 = 3x + 2.
у = х³; у = 3х + 2;
Построить графики функций и найти координаты точек их пересечения.
а) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
б) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Таблица:
х -1 0 1
у -1 2 5
По вычисленным точкам построить прямую.
Координаты точек пересечения: (-1; -1); (2; 8).
Решения уравнения: х = -1; х = 2.
Объяснение:
Графиком функции y=-2(x-1)²+1 является парабола с вершиной в точке в которой х=1 тогда y=-2(x-1)²+1 =-2(1-1)²+1=0+1=1
Вершина параболы в точке (1;1)
так как коэффициент при х равен -2 и -2<0 то ветки параболы направлены вниз
точки пересечения с осями координат
с осью ОУ
x=0 y=-2(x-1)²+1=-2(-1)²+1=-2+1=-1 в точке (0;-1)
с осью ОX
y=0 0=-2(x-1)²+1
2(x-1)²=1 ; x-1=±1/√2 ; x=1±(1/√2) ; x₁=1±(1/√2) ; x₂=1-(1/√2)
точки (1-(1/√2);0) (1+(1/√2);0)
1) нули функции
x₁=1±(1/√2) ; x₂=1-(1/√2)
2) у>0 при
x∈(1±(1/√2) ; x₂=1-(1/√2))
3) y возрастает при х∈(-∞;1]
y убывает при х∈[1;+∞)
4) E(y)=(-∞;1)