Мальчик бросил мяч вертикальное вверх с высоты 1,8 м с начальной скоростью 1,2м/сек. Высота (h), на которой находится мяч через t секунд полета , вычисляется по формуле H=-0,3gt^2+v0t+h0 где g примерно 10(м/с^2) v0-начальная скорость, h0-начальная высота
1)через сколько секунд мяч достигнет максимальной высоты?
2) на какую максимальную высоту поднимется мяч?
3) через сколько секунд камень упадет на землю?
4) на какой высоте будет стрела через 9 сек ?
Геометрическая прогрессия это последовательность чисел где каждое следующее получается из предыдущего умножением на постоянное число (q) называемое знаменателем.
формула для вычисления n-го члена геометрической прогрессии:
a(n) = a1q^(n − 1) т.к. у нас в прогрессии даны 2-й и 5-й члены, то заменяем (n − 1) на (n −2)
q^(n − 2)=a(n)/а1
q=корень степени (n − 2) из [a(n)/а1]
q=корень степени (5 − 2) из [688,5/25,5] =корень степени (3) из [27] = 3
Проверяем:
25,5 - 2-й член прогрессии
25,5*3=76,5 - 3-й член прогрессии
76,5*3=229,5 - 4-й член прогрессии
229,5*3=688,5 - 5-й член прогрессии
ответ: 76,5 - 3-й член прогрессии; 229,5 - 4-й член прогрессии.
Степенью с натуральным показателем называется выражение вида a^n, где n - натуральное число. По логике вещей, степень в данном случае показывает сколько раз данное число надо умножить само на себя, грубо говоря.
Например, 5² = 5 * 5 = 25
(-3)³ = (-3) * (-3) * (-3) = -27
В данных примерах 5 и -3 - это основание степени, а 2 и 3 - это показатели, то есть в выражение вида a^n, a - основание степени, n - показатель степени, а всё выражение называется степенью.
Несколько различаются чётные показатели(то есть, 2, 4, 6 и так далее) и нечётные(3,5,7).
Все чётные степени обладают одним важным свойством,
a^n = (-a)^n
, то есть чётные степени противоположных чисел равны.
Например
5² = (-5)² = 25
Нечётные степени таким свойством не обладают.
5³ = 5 * 5 * 5 = 125
Но
(-5)³ = (-5) * (-5) * (-5) = -125
Когда я имею в виду степень с натуральным показателем, то подразумеваю, что основание не равно 0. Действительно, выражения вида 0² и подобные им не имеют смысла.
Все степени обладают некоторыми общими для них свойствами.
1)a^n * a^m = a^(n+m), то есть при умножении степеней с ОДИНАКОВЫМИ основаниями, основание переписывается, а показатели складываются.
2³ * 2^7 = 2^(3+7) = 2^10 = 1024
2)a^n : a^m = a^(n-m)
3)(a^n)^m = a^nm, то есть, чтобы возвести степень в степень, надо основание переписать, а показатели степеней перемножить.
(5³)² = 5^6
4)(a * b * c)^n = a^n * b^n * c^n. Это справедливо для любого числа множителей.
25² = (5²)² = 5^4 = 625
Так обычно вычисляются сложные выражения. Если что-то непонятно, пиши прямым ходом ко мне, вместе разберёмся.