Марина Павловна внимательно изучает цены в каталогах, прежде чем пойти за покупками. На сей раз она составила таблицу с ценами на продукты для выпечки из разных магазинов. Мука продаётся килограммами, а дрожжи и ванилин—пакетиками по 10 г. Для булочек к чаю ей нужно купить 2 кг муки, 2 пакетика дрожжей, 4 пакетика ванилина. При этом она знает, что в "Пекаре" скидка 5% на все три продукта, а в "Булке"—5% на муку. Вычисли, в каком магазине Марина Павловна сможет сделать наименее выгодные покупки. В ответ внеси суммарную стоимость покупки.
По условию задачи 3b<2> + b<4> =40, где b<2> и b<4> это соответственно, второй и четвертый члены прогрессии, отсюда, учитывая, что b<2> = b<1> + d
и b<4> = b<1> + 3d, получим b<1> = 10-1,5d
Рассмотрим функцию
f(d)= b<3> * b<5>= 8d +6b<1>d + (b<1>)^2=
=1,25d^2 +30d +100 Найдем производную функции f(d) и критические точки f'(d)=2,5d +30, f'(d)=0, d=-12
При переходе через критическую точку d=-12 производная меняет знак с - на +, т.о. при d=-12 произведение третьего и пятого членов прогрессии будет минимальным
По условию задачи 3b<2> + b<4> =40, где b<2> и b<4> это соответственно, второй и четвертый члены прогрессии, отсюда, учитывая, что b<2> = b<1> + d
и b<4> = b<1> + 3d, получим b<1> = 10-1,5d
Рассмотрим функцию
f(d)= b<3> * b<5>= 8d +6b<1>d + (b<1>)^2=
=1,25d^2 +30d +100 Найдем производную функции f(d) и критические точки f'(d)=2,5d +30, f'(d)=0, d=-12
При переходе через критическую точку d=-12 производная меняет знак с - на +, т.о. при d=-12 произведение третьего и пятого членов прогрессии будет минимальным
По условию задачи 3b<2> + b<4> =40, где b<2> и b<4> это соответственно, второй и четвертый члены прогрессии, отсюда, учитывая, что b<2> = b<1> + d
и b<4> = b<1> + 3d, получим b<1> = 10-1,5d
Рассмотрим функцию
f(d)= b<3> * b<5>= 8d +6b<1>d + (b<1>)^2=
=1,25d^2 +30d +100 Найдем производную функции f(d) и критические точки f'(d)=2,5d +30, f'(d)=0, d=-12
При переходе через критическую точку d=-12 производная меняет знак с - на +, т.о. при d=-12 произведение третьего и пятого членов прогрессии будет минимальным
По условию задачи 3b<2> + b<4> =40, где b<2> и b<4> это соответственно, второй и четвертый члены прогрессии, отсюда, учитывая, что b<2> = b<1> + d
и b<4> = b<1> + 3d, получим b<1> = 10-1,5d
Рассмотрим функцию
f(d)= b<3> * b<5>= 8d +6b<1>d + (b<1>)^2=
=1,25d^2 +30d +100 Найдем производную функции f(d) и критические точки f'(d)=2,5d +30, f'(d)=0, d=-12
При переходе через критическую точку d=-12 производная меняет знак с - на +, т.о. при d=-12 произведение третьего и пятого членов прогрессии будет минимальным