Мастер изготавливают одну деталь на две минуты быстрее чем его ученик .сколько деталей сделает каждый из них за 1 час если мастер изготавливает за 1 час на 1 деталей больше чем ученик
1. Из условия нам ясно, что a(4)/a(1)=7 и a(6)*a(3)=220. Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения: =7 и (a(1)+5*d)*(a1+2d)=220 У нас получается система из двух уравнений. Решаем её. Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2 ОТВЕТ: -2
1. Из условия нам ясно, что a(4)/a(1)=7 и a(6)*a(3)=220. Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения: =7 и (a(1)+5*d)*(a1+2d)=220 У нас получается система из двух уравнений. Решаем её. Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2 ОТВЕТ: -2
Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения:
=7
и
(a(1)+5*d)*(a1+2d)=220
У нас получается система из двух уравнений.
Решаем её.
Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2
ОТВЕТ: -2
2.
По формуле бесконечной геометрической прогрессии, S=b1/(1-q)
280=210/(1-q)
q=0,25
b(3)= 210*0,25^2=13,125
ОТВЕТ: q=0,25, b(3)=13,125
Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения:
=7
и
(a(1)+5*d)*(a1+2d)=220
У нас получается система из двух уравнений.
Решаем её.
Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2
ОТВЕТ: -2
2.
По формуле бесконечной геометрической прогрессии, S=b1/(1-q)
280=210/(1-q)
q=0,25
b(3)= 210*0,25^2=13,125
ОТВЕТ: q=0,25, b(3)=13,125