1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
Предположим, что является корнем уравнения. Тогда последний корень неотрицателен. Стало быть, левая часть не меньше , противоречие.
Пусть является корнем уравнения. Получаем аналогичную ситуацию.
Значит, искомый корень лежит в (*).
Пусть . Тогда уравнение можно переписать в виде . Домножим обе части на , получим: . Левая часть уравнения равна . С учетом (*) можно записать . Наконец, . Исходное уравнение: . Возводя в квадрат первое уравнение и складывая со вторым, умноженным на 2, получаем . Если теперь возведенное в квадрат первое уравнение вычесть из второго, получим . Из этой системы следует два решения: . Вернемся к исходному уравнению: , откуда . Второй случай: , откуда .
(x - 1)^2*(x + 2) = 0
(x - 1)^2 = 0
x - 1 = 0
x = 1
x + 2 = 0
x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1
x₁ = 1
x₂= - 1;
x - 3 = 0
x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0
x = 4
x - 3 = 0
x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0
x^2 = 4
x₁ = 2;
x₂ = - 2
x + 1 = 0
x₃ = - 1
Предположим, что является корнем уравнения. Тогда последний корень неотрицателен. Стало быть, левая часть не меньше , противоречие.
Пусть является корнем уравнения. Получаем аналогичную ситуацию.
Значит, искомый корень лежит в (*).
Пусть . Тогда уравнение можно переписать в виде . Домножим обе части на , получим: . Левая часть уравнения равна . С учетом (*) можно записать . Наконец, . Исходное уравнение: . Возводя в квадрат первое уравнение и складывая со вторым, умноженным на 2, получаем . Если теперь возведенное в квадрат первое уравнение вычесть из второго, получим . Из этой системы следует два решения: . Вернемся к исходному уравнению: , откуда . Второй случай: , откуда .