Медсестра обслуживает трех пациентов. Вероятность того, что в течение часа пациент потребует внимания медсестры, равна для первого пациента – 0,2, для второго – 0, 5, для третьего – 0,7. Вероятность того, что по крайней мере один из пациентов не потребует внимания медсестры в течение часа, равна
Домножим числитель и знаменатель на такое число, что бы получить в знаменателе квадрат целого числа. Проще всего домножить на 7:
28/49 и 35/49
Но между 28 и 35 нету квадратов целых чисел, поэтому надо ещё домножить числитель и знаменатель каждого числа, но уже на квадрат какого-то целого числа, например, на 4 ,9, 16 и т.д. Попробуем умножить на 4:
112/196 и 140/196
Между числами 112 и 140 есть число 121, которое является квадратом числа 11. Поэтому искомое число 121/196 (так как оно будет квадратом числа 11/14).
Можно калькулятором себя проверить, действительно ли число 121/196 будет находится между 4/7 и 5/7:
4/7 = 0,5714...
121/196 = 0,6173...
5/7 = 0,7143...
x² +px +q =0 .
По условию p, q ∈ Q ( Q -множество рациональных чисел).
По теореме Виета : { x₁ +x₂ = - p ; x₁ *x₂ =q ⇔{ p = -(x₁ +x₂) ; q =x₁ *x₂.
* * * для того, чтобы p, q были рациональными корни должны иметь вид : x₁ =a +√b ; x₂ =a -√b , √b -иррациональное число * * *
---
а)
x₂ = √3 ⇒ x₂ = -√3.
p = -( x₁ +x₂) =0 ;
q =x₁ *x₂ =√3 *(-√3) = -3 .
x² -3 = 0 .
---
б)
x₁ = -1+√3⇒x₂ = -1-√3 . || иначе x₂ = -(√3+1) ||
p = -(x₁+x₂) = - ( ( -1+√3)+( -1-√3) )=2 ;
q =x₁ *x₂ = (√3-1)* (-(√3 +1) ) = -((√3) ² -1)= -(3-1) =-2 .
x² +2x -2 = 0 .
---
в)
x₁ = 2-√5 ⇒x₂ =2+√5
p= -(x₁+x₂) = - ( 2-√5+2+√5 )= -4 ;
q =x₁ *x₂ = ( 2-√5)*(2+√5) =2² -(√5)² =4-5 = -1 .
x² -4x -1 =0 .