1) 2x² - xy = x(2x - y)
2) ab + 3ab² = ab(1 + 3b)
3) 2y⁴ + 6y³ - 4y² = 2y²(y² + 3y - 2)
4) 2a(a - 1) + 3(a - 1) = (a - 1)(2a + 3)
5) 4x - 4y + ax - ay = (4x - 4y) + (ax - ay) = 4(x - y) + a(x - y) = (x - y)(4 + a)
1) 2a²b² - 6ab³ + 2a³b = 2ab(ab - 3b² + a²)
2) a²(a - 2) - a(a - 2)² = a(a - 2)(a - a + 2) = 2a(a - 2)
3) 3x - xy - 3y + y² = (3x - xy) - (3y - y²) = x(3 - y) - y(3 - y) = (3 - y)(x - y)
4) ax - ay + cy - cx + x - y = (ax - ay) - (cx - cy) + (x - y) =
= a(x - y) - c(x - y) + (x - y) = (x - y)(a - c + 1)
3.
xy - x² - 2y + 2x = (xy - x²) - (2y - 2x) = x(y - x) - 2(y - x) = (y - x)(x - 2)
1)
a) 6x^2-3x=0
3x(2x-1)=0
x=0; x=1/2
б)25x^2=1
x^2=1/25
x=±√1/25
x=1/5;x=-1/5
в)4x^2+7x-2=0
D=49+32=81
x=(-7±√81)/8
x=-2; x=1/4
г)4x^2+20x+25=0
D=400-400=0
X=-20/8
x= -5/2
д)3x^2+2x+1=0
D=4-12=-8<0
x∈∅
е)(x^2+5x)/2-3=0
(x^2+5x)/2=3
x^2+5x=6
x^2+5x-6=0
x=1; x=-6
2) x^4-29x^2+100=0
Замена:t=x^2, t>=0
t^2-29t+100=0
D=841-400=441=21^2
t=25; t =4
⇒x=±√25; x=±√4;
x=-5;x=5;x=-2;x=2
3)(3x^2+7x-6)/(4-9x^2)
Решим отдельно уравнение в числителе
3x^2+7x-6=0
D=49+72=121=11^2
x=-3;
x=2/3
⇒3x^2+7x-6=(x+3)(3x-2)
(x+3)(3x-2)/(2-3x)(2+3x) = -(x+3)/(2+3x)
4) x^2-26x+q=0
По теореме Виета
x1+x2=26
12+x2=26
x2=14
x1*x2=q
14*12=q
q=168
1) 2x² - xy = x(2x - y)
2) ab + 3ab² = ab(1 + 3b)
3) 2y⁴ + 6y³ - 4y² = 2y²(y² + 3y - 2)
4) 2a(a - 1) + 3(a - 1) = (a - 1)(2a + 3)
5) 4x - 4y + ax - ay = (4x - 4y) + (ax - ay) = 4(x - y) + a(x - y) = (x - y)(4 + a)
1) 2a²b² - 6ab³ + 2a³b = 2ab(ab - 3b² + a²)
2) a²(a - 2) - a(a - 2)² = a(a - 2)(a - a + 2) = 2a(a - 2)
3) 3x - xy - 3y + y² = (3x - xy) - (3y - y²) = x(3 - y) - y(3 - y) = (3 - y)(x - y)
4) ax - ay + cy - cx + x - y = (ax - ay) - (cx - cy) + (x - y) =
= a(x - y) - c(x - y) + (x - y) = (x - y)(a - c + 1)
3.
xy - x² - 2y + 2x = (xy - x²) - (2y - 2x) = x(y - x) - 2(y - x) = (y - x)(x - 2)
1)
a) 6x^2-3x=0
3x(2x-1)=0
x=0; x=1/2
б)25x^2=1
x^2=1/25
x=±√1/25
x=1/5;x=-1/5
в)4x^2+7x-2=0
D=49+32=81
x=(-7±√81)/8
x=-2; x=1/4
г)4x^2+20x+25=0
D=400-400=0
X=-20/8
x= -5/2
д)3x^2+2x+1=0
D=4-12=-8<0
x∈∅
е)(x^2+5x)/2-3=0
(x^2+5x)/2=3
x^2+5x=6
x^2+5x-6=0
x=1; x=-6
2) x^4-29x^2+100=0
Замена:t=x^2, t>=0
t^2-29t+100=0
D=841-400=441=21^2
t=25; t =4
⇒x=±√25; x=±√4;
x=-5;x=5;x=-2;x=2
3)(3x^2+7x-6)/(4-9x^2)
Решим отдельно уравнение в числителе
3x^2+7x-6=0
D=49+72=121=11^2
x=-3;
x=2/3
⇒3x^2+7x-6=(x+3)(3x-2)
(x+3)(3x-2)/(2-3x)(2+3x) = -(x+3)/(2+3x)
4) x^2-26x+q=0
По теореме Виета
x1+x2=26
12+x2=26
x2=14
x1*x2=q
14*12=q
q=168