Мне, ! можно не все сразу, по отдельности! 1) составьте квадратное уравнение, корни которого на 3 меньшекорней уравнения х^2+8х-1=0. 2) составьте какое-нибудь квадратное уравнение, корни которого противоположны корням уравнения
8х^2-7х-11=0. 3) составьте какое-нибудь квадратное уравнение, корни которого равны корням уравнения 15х^2-7х-3=0, умноженным на 3. 4) составьте какое-нибудь квадратное уравнение, корни которого равны корням уравнения 7х^2-3х-1=0, деленного
на 5. заранее =)
точно не знаю, но 4 вроде так
Воспользуемся теоремой Виета, которая гласит, что в квадратном уравнении вида х^2 + bх + с = 0 действует следующее правило: х1+х2=-b (в данном случае b1=-7) х1*х2=с (в данном случае с1=-1) Решение: новое уравнение будет выглядеть так: х^2 + (b2)*х + с2 = 0 найдём b2 и с2: По теореме Виета: Во-первых: 5*х1 + 5*х2 = -b2 = = 5*(х1+х2) = -5*b1 = -5*(-7) = 35 = -b2 следовательно b2= -35 во-вторых: (5*х1)*(5*х2)=с2 25*(х1*х2) = с2 25*с1 = с2 = 25*(-1) = -25 Подставляем в новое уравнение найденные b2 и с2: ответ: х^2-35х-25=0