Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
а=1
а искомая функция имеет вид:
у = 2х - 1
Объяснение:
y=2ax-a^2
Это - функция типа
y=kx+b
где k = 2a; b = -a^2
График проходит через точку (-1;-3), т.е. известно, что
y(-1) = -3
Подставим значения:
-3 = 2a•(-1) - a²
-3 = -2a - a²
a² + 2a -3 = 0
По Т. Виетта раскладываем на множители
(a+3)(а-1)=0
а1 = -3
а2 = 1
Вычислим, которое значение а нам подходит: График пересекает ось 0x правее начала координат, т.е.
2ах-а²= 0
при х>0
Если а=1
Если а=-3, то
2•(-3)х-3²=0
-6х = 9
х=-1,5 < 0 - не подходит
Если а=1
то
2•1х-3²=0
2х = 9
х=4,5 > 0 - а=1 подходит
Т.е. а=1
а искомая функция имеет вид:
у = 2х - 1