Обозначаем прямую х= -2 +t ; y= 4+3t ; z= -3+2t через a . Если берем произвольную точку Т ∉ a ( не на прямой ) и через эту точку проведем прямую k || a , то очевидно любая плоскость α (кроме единственной , которая проходит и через a) будет параллельно a : α || a . [ прямая k _"ось вращения " ] . * * * t =(x+2)/1=(y-4)/3=(z+3)/2 ; L ={1;3;2} направляющий вектор * * * Вектор n{ A ;2 ; B} нормальный вектор плоскости β: Ax+2y +Bz -10 =0. β || a ⇒ n ⊥ L ⇔ n*L =0 (скалярное произведение). A*1+2*3+ B*3 =0 ⇒A +2B = - 6 (соотношение между A и B). любая пара чисел ( -6-2B ; B ) , B ≠ -10. * * * Если B = -10 ⇒a ∈ β.* * *
ответ : пара чисел (- 6 - 2B ; B) , B ≠ -10 или по другому (A ;- (6+A)/2) , A ≠ 14.
(2,5; 6,75)
Объяснение:
1) По условию, искомая прямая пересекает параболу на оси ординат, значит, абсцисса точки пересечения равна нулю. Найдём ординату точки пересечения:
y(0)=3(0-1)²=3*(-1)²=3*1=3
(0;3) - координаты точки пересечения прямой с параболой.
2) Итак, наша прямая проходит через точки (-2;0) и (0;3). Составим её уравнение:
s=(0-(-2);3-0)
s=(2;3) - направляющий вектор прямой
(x-0)/2=(y-3)/3
x/2=(y-3)/3
3x=2(y-3)
3x=2y-6
2y=3x+6 |:2
y=1,5x+3 - искомое уравнение прямой
3) Находим точки пересечения прямой и параболы:
3(x-1)²=1,5x+3 |:3
(x-1)²=0,5x+1
x²-2x+1=0,5x+1
x²-2,5x=0
x(x-2,5)=0
x₁=0 x-2,5=0
x₂=2,5
y(2,5)=1,5*2,5+3=3,75+3=6,75
(0;3) - найденная ранее точка пересечения
(2,5; 6,75) - искомая точка пересечения
Если берем произвольную точку Т ∉ a ( не на прямой ) и через эту точку проведем прямую k || a , то очевидно любая плоскость α (кроме единственной , которая проходит и через a) будет параллельно a : α || a . [ прямая k _"ось вращения " ] .
* * * t =(x+2)/1=(y-4)/3=(z+3)/2 ; L ={1;3;2} направляющий вектор * * *
Вектор n{ A ;2 ; B} нормальный вектор плоскости β: Ax+2y +Bz -10 =0.
β || a ⇒ n ⊥ L ⇔ n*L =0 (скалярное произведение).
A*1+2*3+ B*3 =0 ⇒A +2B = - 6 (соотношение между A и B).
любая пара чисел ( -6-2B ; B ) , B ≠ -10. * * * Если B = -10 ⇒a ∈ β.* * *
ответ : пара чисел (- 6 - 2B ; B) , B ≠ -10 или по другому (A ;- (6+A)/2) , A ≠ 14.