Чтобы найти ОДЗ, нужно выписать выражения с переменной на которую могут быть запреты. Например, 1/х. ОДЗ: все числа, кроме ноля, так как делить на ноль нельзя. Что касается условия. На основания 0,6 и 1 2/3 запретов нет, как и на показатели степеней. Но есть условия для логарифмов. Во-первых, основания должно быть больше ноля (10>0), во-вторых, число под знаком логарифма должно быть положительным. То есть х^2>0 и -х>0. Число в квадрате всегда больше ноля, тогда решим второе: -х>0. Получается, что х<0. Поэтому ОДЗ: х<0.
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 143
Чтобы найти ОДЗ, нужно выписать выражения с переменной на которую могут быть запреты. Например, 1/х. ОДЗ: все числа, кроме ноля, так как делить на ноль нельзя. Что касается условия. На основания 0,6 и 1 2/3 запретов нет, как и на показатели степеней. Но есть условия для логарифмов. Во-первых, основания должно быть больше ноля (10>0), во-вторых, число под знаком логарифма должно быть положительным. То есть х^2>0 и -х>0. Число в квадрате всегда больше ноля, тогда решим второе: -х>0. Получается, что х<0. Поэтому ОДЗ: х<0.
Объяснение:
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 143
136 + 16 > 143 неверно