Мне, ! решите эти 3 подробно. квадратные корни, 8 класс.
вынесите множитель из-под знака корня:
√18х в степени 3 при х ≥ 0
√50а в степени 5 при а ≥ 0
сократите дробь:
х² - у√3 / х² - 3у²
а² - 5b² / а + b√5
исключите иррациональность из знаменателя дроби:
5 / √15
1 / √11-2
3 / √21
1 / 5-√7
-x^2+2x-1 = -(x^2-2x+1) = -(x-1)^2
Точка пересечения о осью ординат y=-1; x=0
значит, ищем касательную в точке х0=0
f(x)=-x^2+2x-1
f'(x)=-2x+2
f(a)=-1
f'(a)=2
y=f(a)+f'(a)(x-a)=-1+2(x-0)=-1+2x=2x-1
Значит, треугольник образован линиями y=2-x; y=2x-1 и осью абсцисс.
2x-1=0 => x=1/2
2-x=0 => x=2
берем интеграл
эм, что-то не получается нормальный интеграл взять, слишком большая плозадь получается
придется брать по отдельности
int (2x-1))dx; x=1/2..1 = 1/4
int (2-х))dx; x=1..2 = 1/2
1/4+1/2=3/4 =0.75 - искомая площадь
{x=4+y, {(4+y)y+y^2=6; {x=4+y, {4y+y^2+y^2=6; Выносим у за скобку {x=4+y, {y(4+y+y)=6; {x=4+y, {y(4+2y)=6; {x=4+y, {4y+2y^2=6. Решаем уравнение:
4y+2y^2=6 (приравниваем к нулю, а число 6 переносим в противоположную сторону и меняем его знак (+ на -) в итоге:
4y+2y^2-6=0,(располагаем числа по порядку)
2y^2+4y-6=0, решаем через дискриминант:
D=4^2-4*2*(-6)=16+48=64, квадратный корень из 64 равен 8:
y1=-4+8/4=1
y2=-4-8/4=-12/4=-3. Находим теперь х (х=4+у):
x1=4+1=5
х2=4+(-3)=1 => y1=1, у2=-3, х1=5, х2=1