Графиком является прямая , пусть х=о тогда у =0 А(0;0) х=10 у=0.4*10=4 В(10;4) через точки А и В ПРОВОДИМ ПРЯМУЮ,
здесь же проводим прямые у=0 - это ось х, и у= - 2 1) 0.4х>=0 это по графику нужно посмотреть для каких х прямая у=0.4х расположена выше графика у=х ответ: для х>=0
2) 0.4x<= -2 нужно посмотреть для каких значений х график функции у=0.4х расположен ниже графика функции у= -2 найдем точку пересечения 0,4х= -2 при х= -5 из точки пересечения прямых опускаем перпендикуляр на ось х это и будет точка с координатой х= -5 ответ: х<= -5
Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
х=10 у=0.4*10=4 В(10;4) через точки А и В ПРОВОДИМ ПРЯМУЮ,
здесь же проводим прямые у=0 - это ось х, и у= - 2
1) 0.4х>=0 это по графику нужно посмотреть для каких х прямая у=0.4х расположена выше графика у=х ответ: для х>=0
2) 0.4x<= -2 нужно посмотреть для каких значений х график функции у=0.4х расположен ниже графика функции у= -2
найдем точку пересечения 0,4х= -2 при х= -5
из точки пересечения прямых опускаем перпендикуляр на ось х это и будет точка с координатой х= -5 ответ: х<= -5
собираем в общий ответ: -5 >= x >= 0
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.