Множество точек на плоскости задано условиями y=xпри x> или =0,0при x< 0. изобразите это множество точек на координатной плоскости.какие из точек(-1; ,5; 0,; ; -3) принадлежат этому множеству?
Числитель : выражение √(2-х )под знаком корня четной степени ,значит подкоренное выражение 2-х≥0 ⇒ х≤2
знаменатель : выражение √(1-х )под знаком корня четной степени ,значит подкоренное выражение 1-х≥0 ⇒ х≤1 , но при этом х+√(1-х ≠0, так как на 0 делить нельзя ,значит -х ≠√(1-х ) найдем точки в которых выполняется это равенство - х=√(1-х ), чтобы исключить х<0 х=√(1-х ), возведем обе части в квадрат х²=1-х х²+х-1=0 D=1+4=5 x₁=(-1+√5)/2 ≈0,62 x₂=(-1-√5)/2≈ -1,62 < 0 x∈(-∞ ; (-1-√5)/2) ∪ ((-1-√5)/2 ; 1]
х² - 2х - х +х² - 2 = 0
2х² - 3х - 2 =0
D=(-3)² - 4*2*(-2) = 9+16 = 25 = 5²
x1= (3 - 5)/(2*2) = -2/4 =-0.5
x2 =(3+5)/4 = 8/4 = 2
2) 3х² -8х + 13 = (х-5)²
3х² - 8х + 13 = х² - 10х + 25
3х² - 8х + 13 - х² + 10х - 25 =0
2х² +2х -12 = 0 |÷2
x²+x - 6 =0
D=1² - 4*1*(-6) = 1 +24 = 25 = 5²
x1= (-1-5)/ (2*1) = -6/2 =-3
x2= (-1+5)/2 = 4/2=2
3) (x+1)²=(x-2)²
x²+2x+1 = x² -4x +4
x² +2x + 1 - x² +4x - 4 =0
6x - 3 =0
6x= 3
x=3/6 = 1/2
x=0.5
4)(x-10)² = (1-x)²
x²-20x +100 = 1 -2x+x²
x² -20x +100 -1 +2x -x²=0
18x + 99 =0
x=99/18 = 11/2
x=5.5
5) условие можно прочитать по-разному:
(x+x)/3 = 8
2x/3 =8
2x= 3*8
2x= 24
x=24/2
x=12
или
x + (x/3) = 8 |*3
3x +x = 8*3
4x=24
x=24/4
x= 6
6) x+1-5(x-5)(5-x)+5 = ??? условие не корректно.
7)
х/2 + х/4 = -3/2 | *4
2x +x = - 3/2 * 4
3x= - 6
x=-6/3
x=-2
8)(x/2) +(x/4) +x= -49/4 |*4
2x +x +4x = -49
7x=-49
x= -49/7
x=-7
9) 6 - (x/3) = х/7 | * (7*3)
126 - 7x = 3x
-7x-3x=-126
-10x=-126
x= (-126) / (-10)
x= 12.6
10) (13+x)/3 - 3 =4x |*3
13+x - 9 = 12x
4+x= 12x
12x-x=4
11x=4
x=4/11
11) x-(x/3) = 1/2 |*6
6x - 2x = 3
4x=3
x=3/4
знаменатель : выражение √(1-х )под знаком корня четной степени ,значит подкоренное выражение 1-х≥0 ⇒ х≤1 , но при этом х+√(1-х ≠0,
так как на 0 делить нельзя ,значит -х ≠√(1-х )
найдем точки в которых выполняется это равенство - х=√(1-х ), чтобы
исключить х<0
х=√(1-х ), возведем обе части в квадрат
х²=1-х
х²+х-1=0
D=1+4=5
x₁=(-1+√5)/2 ≈0,62
x₂=(-1-√5)/2≈ -1,62 < 0
x∈(-∞ ; (-1-√5)/2) ∪ ((-1-√5)/2 ; 1]