мост состоит из трех пролетов. Длина первого пролета 12 5/6 м что в 4 раза больше длинны второго пролета, а третий в 3 раза больше длины третьего пролета. Найдите длину всего моста БЫСТР ЗАВТРА СДАВАТЬ
Остаток от деления некоторого числа на 10 даст последнюю цифру этого числа. Поэтому нам достаточно установить эту последнюю цифру, а она будет, в свою очередь, равна последней цифре числа 3²⁰¹⁵, поскольку старшие цифры в 2013 на результат не влияют, пусть даже там будет сто цифр впереди. Выпишем несколько первых степеней тройки 3⁰=1 3¹=3 3²=9 3³=27 3⁴=81 3⁵=243 3⁶=279 3⁷=2187 3⁸=6561
Мы видим, что последняя цифра циклически принимает значения 1, 3, 9 и 7. Если остаток от деления степени на 4 равен 0, то получаем цифру 1. Если остаток от деления степени на 4 равен 1, то получаем цифру 3. Если остаток от деления степени на 4 равен 2, то получаем цифру 9. Если остаток от деления степени на 4 равен 3, то получаем цифру 7.
Но тогда достаточно определить остаток от деления на 4 степени 2015 и по нему выбрать нужную цифру. 2015 / 4 = 503 и остаток 3.
Сразу заметим, что f(x) - непрерывна и не имеет асимптот. Найдем ее промежутки возрастания и убывания. f'(x)=4/3*(3-x)^3+4x/3*3(3-x)^2*(-1)=(3-x)^2*(4/3*(3-x)-4x/3*3)=(x-3)^2*(4-16/3*x)=-16/3*(x-3)^2*(x-3/4) Нули производной: x=3, x=3/4. f'(x) + - - 3/4 3 >x f(x) возрастает убывает убывает Отсюда следует, что максимум функции достигается при x=3/4. При пересечении функции прямой y=m будет более одной точки в том случае, когда прямая y=m лежит ниже максимума f(x) - так она будет пересекать f(x) ровно в двух точках. Отсюда m < f(3/4) f(3/4)=4/3*3/4*(3-3/4)^3=(9/4)^3=729/64 m<729/64
Выпишем несколько первых степеней тройки
3⁰=1
3¹=3
3²=9
3³=27
3⁴=81
3⁵=243
3⁶=279
3⁷=2187
3⁸=6561
Мы видим, что последняя цифра циклически принимает значения 1, 3, 9 и 7.
Если остаток от деления степени на 4 равен 0, то получаем цифру 1.
Если остаток от деления степени на 4 равен 1, то получаем цифру 3.
Если остаток от деления степени на 4 равен 2, то получаем цифру 9.
Если остаток от деления степени на 4 равен 3, то получаем цифру 7.
Но тогда достаточно определить остаток от деления на 4 степени 2015 и по нему выбрать нужную цифру.
2015 / 4 = 503 и остаток 3.
Следовательно, искомая цифра 7
f'(x)=4/3*(3-x)^3+4x/3*3(3-x)^2*(-1)=(3-x)^2*(4/3*(3-x)-4x/3*3)=(x-3)^2*(4-16/3*x)=-16/3*(x-3)^2*(x-3/4)
Нули производной: x=3, x=3/4.
f'(x) + - -
3/4 3 >x
f(x) возрастает убывает убывает
Отсюда следует, что максимум функции достигается при x=3/4.
При пересечении функции прямой y=m будет более одной точки в том случае, когда прямая y=m лежит ниже максимума f(x) - так она будет пересекать f(x) ровно в двух точках. Отсюда m < f(3/4)
f(3/4)=4/3*3/4*(3-3/4)^3=(9/4)^3=729/64
m<729/64