1. а) 0,255=255/1000=17*3*5/(5^3*2^3=(17*3/2)/(5^2*2^2). Значит √0,255=(√(51/2))/10. Т.к. 51/2 несократимая дробь и числитель и знаменатель не являются полными квадратами, то число иррационально б) пусть х=5,4444... Тогда 10х=54,444.. Тогда 10х-х=9х=54-5=49, значит х=49/9, а значит √х=7/3, т.е. число рационально
2. Пусть имеется числовая ось с началом координат О. Проводим перпендикуляр к числовой оси через начало координат О и откладываем на нем точку А так, чтобы ОА=1. На самой числовой оси откладываем отрезок ОB длиной 2 тоже от начала координат. Тогда треугольник AOB прямоугольный с прямым углом О, значит по теореме Пифагора его гипотенуза AB=√(1²+2²)=√5. На числовой оси от начала координат в положитлеьном направлении откладываем отрезок OD длиной АВ. Полученная точка D имеет координату √5.
3. Т.к. √2=1,41, то достаточно взять число, например, 1,45.
б) пусть х=5,4444... Тогда 10х=54,444.. Тогда 10х-х=9х=54-5=49, значит х=49/9, а значит √х=7/3, т.е. число рационально
2. Пусть имеется числовая ось с началом координат О. Проводим перпендикуляр к числовой оси через начало координат О и откладываем на нем точку А так, чтобы ОА=1. На самой числовой оси откладываем отрезок ОB длиной 2 тоже от начала координат. Тогда треугольник AOB прямоугольный с прямым углом О, значит по теореме Пифагора его гипотенуза AB=√(1²+2²)=√5. На числовой оси от начала координат в положитлеьном направлении откладываем отрезок OD длиной АВ. Полученная точка D имеет координату √5.
3. Т.к. √2=1,41, то достаточно взять число, например, 1,45.
Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4)=7