моторная лодка отправилась вниз от одной пристани к другой через 8 часов вернулась, затратив на стоянку 2,5 часа. найти соб.скорость лодки, если скорость реки 1 км/ч, а растояние между пристанью 30 км
Раскрываем знак модуля. Если 2х-у≥0, то первое уравнение принимает вид: х²+2х+у²+4у=4·(2х-у) (х-3)²+(у+4)²=5² уравнение окружности с центром в точке (3;-4) и радиусом 5
Если 2х-у<0, то первое уравнение принимает вид: х²+2х+у²+4у=-4·(2х-у) (х+5)²+у=5²уравнение окружности с центром в точке (-5;0) и радиусом 5
Прямая х+2у=а и граница областей 2х-y=0 взаимно перпендикулярны: их угловые коэффициенты (-1/2) и 2, произведение угловых коэффициентов равно -1.
Напишем уравнения прямой, параллельной прямой 2х-у=0 и проходящей через центр окружности (-5;0) 2х-у+с=0; 2·(-5)-0+с=0; с=10
Найдем точки пересечения прямой 2х-у+10=0 с окружностью (х+5)²+у²=25 (х+5)²+(2х+10)²=25 (х+5)²+4(х+5)²=25 5(х+5)²=25 (х+5)²=5 х₁=-5-√5 или х₂=-5+√5 у₁=2х₁+10=-2√5 у₂=2√5
Напишем уравнение прямой, параллельной прямой х+2у=а и проходящей через точку (-5-√5; -2√5) -5-√5-4√5=а ⇒а=-5-5√5 х+2у=-5-5√5 - на графике зеленая прямая
Напишем уравнение прямой, параллельной прямой х+2у=а и проходящей через точку (-5+√5; 2√5) -5+√5+4√5=а ⇒а=-5+5√5 х+2у=-5+5√5 - на графике синяя прямая
Прямые, расположенные между ними имеют с окружностями более двух точек пересечения. О т в е т. -5-5√5<a<-5+5√5
подставим 4а во второе уравнение системы. получим 4ху=2х²+2у²-2, упростим
-2ху+х²+у²=1; (х-у)²-1=0; (х-у-1)*(х-у+1)=0; 1)х=у+1 или 2)х=у-1 получили две прямые.
Если х=у+1,то 4у*(у+1)+2=а; 4у²+4у+2=а; (2у+1)²=а-1; Если а=1 ,то получим один корень, если а>1, то два корня. Если а<1, то корней нет.
Если рассмотреть первое уравнение, то при каждом a ≠ 0 — уравнение окружности c центром (0, 0) и радиусом а√2, тогда система при а=0 имеет единственное решение и поэтому не удовлетворяет условию задачи. При а≤0 уравнение не имеет смысла.
используем теперь результат выше и уточним ответ на задачу.
Если х=у+1, то у²+у²+2у+1=2а,у²+у+1/2=а; (у+1/2)²=а-1/4, при а=1/4 уравнение имеет одно решение, а при а >1/4 два различных решения.
Если х=у-1, то у²+у²-2у+1=2а,у²-у+1/2=а; (у-1/2)²=а-1/4, при а=1/4 уравнение имеет одно решение, а при а >1/4 два различных решения.
Если 2х-у≥0, то первое уравнение принимает вид:
х²+2х+у²+4у=4·(2х-у)
(х-3)²+(у+4)²=5² уравнение окружности с центром в точке (3;-4) и радиусом 5
Если 2х-у<0, то первое уравнение принимает вид:
х²+2х+у²+4у=-4·(2х-у)
(х+5)²+у=5²уравнение окружности с центром в точке (-5;0) и радиусом 5
Прямая х+2у=а и граница областей 2х-y=0 взаимно перпендикулярны:
их угловые коэффициенты (-1/2) и 2, произведение угловых коэффициентов равно -1.
Напишем уравнения прямой, параллельной прямой 2х-у=0 и проходящей через центр окружности (-5;0)
2х-у+с=0;
2·(-5)-0+с=0;
с=10
Найдем точки пересечения прямой 2х-у+10=0 с окружностью
(х+5)²+у²=25
(х+5)²+(2х+10)²=25
(х+5)²+4(х+5)²=25
5(х+5)²=25
(х+5)²=5
х₁=-5-√5 или х₂=-5+√5
у₁=2х₁+10=-2√5 у₂=2√5
Напишем уравнение прямой, параллельной прямой х+2у=а и проходящей через точку (-5-√5; -2√5)
-5-√5-4√5=а ⇒а=-5-5√5
х+2у=-5-5√5 - на графике зеленая прямая
Напишем уравнение прямой, параллельной прямой х+2у=а и проходящей через точку (-5+√5; 2√5)
-5+√5+4√5=а ⇒а=-5+5√5
х+2у=-5+5√5 - на графике синяя прямая
Прямые, расположенные между ними имеют с окружностями более двух точек пересечения.
О т в е т. -5-5√5<a<-5+5√5
подставим 4а во второе уравнение системы. получим 4ху=2х²+2у²-2, упростим
-2ху+х²+у²=1; (х-у)²-1=0; (х-у-1)*(х-у+1)=0; 1)х=у+1 или 2)х=у-1 получили две прямые.
Если х=у+1,то 4у*(у+1)+2=а; 4у²+4у+2=а; (2у+1)²=а-1; Если а=1 ,то получим один корень, если а>1, то два корня. Если а<1, то корней нет.
Если рассмотреть первое уравнение, то при каждом a ≠ 0 — уравнение окружности c центром (0, 0) и радиусом а√2, тогда система при а=0 имеет единственное решение и поэтому не удовлетворяет условию задачи. При а≤0 уравнение не имеет смысла.
используем теперь результат выше и уточним ответ на задачу.
Если х=у+1, то у²+у²+2у+1=2а,у²+у+1/2=а; (у+1/2)²=а-1/4, при а=1/4 уравнение имеет одно решение, а при а >1/4 два различных решения.
Если х=у-1, то у²+у²-2у+1=2а,у²-у+1/2=а; (у-1/2)²=а-1/4, при а=1/4 уравнение имеет одно решение, а при а >1/4 два различных решения.