Моторная лодка проплыла 12 км по течению реки и вернулась потратив на весь путь 1 час 10 минут.найдите скорость течения реки если собственная скорость моторной лодки равна 21 км/ч
Пусть х (км/ч) - скорость течения, тогда (21 + х) км/ч - скорость по, а (21 - х) км/ч - скорость против течения. Общее время - сумма времени на путь туда и времени на путь обратно.
Время туда 12 / (21 + x)
Время обратно 12 / (21 - x)
Общее время 1ч 10 мин = 70/60 ч = 7/6 ч
12/ (21 + x) + 12/ (21 - x) = 7/6
(12 · 21 + 12x + 12 · 21 - 12x)/(21² - x²) = 7/6
Используя основное свойство пропорции, получаем:
2 · 12 · 21 · 6 = 7 · (21² - х²) | ÷ 7
24 · 3 · 6 = 21² - x²
х² = 9 · 49 - 9 · 48
x² = 9 · (49 - 48)
x² = 9
x₁ = -3 - не соответствует смыслу задачи (x должно быть больше 0)
Пусть х - скорость течения реки
Тогда
12/(21+х) + 12/(21-х) = 1 1/6
12(21-х) / (21+х)(21-х) + 12(21+х) / (21+х)(21-х) = 7/6
12(21-х+21+х) = (441-х²)* 7/6
12*2*21= (441-х²)* 7/6
441-х² = (12*2*21)*6 / 7 = 12*2*3*6 = 432
х² = 9
х = 3 км/ч
Объяснение:
Пусть х (км/ч) - скорость течения, тогда (21 + х) км/ч - скорость по, а (21 - х) км/ч - скорость против течения. Общее время - сумма времени на путь туда и времени на путь обратно.
Время туда 12 / (21 + x)
Время обратно 12 / (21 - x)
Общее время 1ч 10 мин = 70/60 ч = 7/6 ч
12/ (21 + x) + 12/ (21 - x) = 7/6
(12 · 21 + 12x + 12 · 21 - 12x)/(21² - x²) = 7/6
Используя основное свойство пропорции, получаем:
2 · 12 · 21 · 6 = 7 · (21² - х²) | ÷ 7
24 · 3 · 6 = 21² - x²
х² = 9 · 49 - 9 · 48
x² = 9 · (49 - 48)
x² = 9
x₁ = -3 - не соответствует смыслу задачи (x должно быть больше 0)
х₂ = 3
ответ: скорость течения 3 км/ч
См. решение на рисунке