а) Викладемо кулі в ряд. Для визначення розкладу наших куль по шести скриньок розділимо ряд п'ятьма перегородками на шість груп: перша група для першого ящика, друга - для другого і так далі. Таким чином, число варіантів розкладки куль по шухлядах дорівнює числу в розташування п'яти перегородок. Перегородки можуть стояти на будь-якому з 19 місць (між 20 кулями - 19 проміжків). Тому число їх можливих розташувань одно.
б) Розглянемо ряд з 25 предметів: 20 куль і 5 перегородок, розташованих в довільному порядку. Кожен такий ряд однозначно відповідає деякому розкладки куль по ящиках: в перший ящик потрапляють кулі, розташовані лівіше першої перегородки, в другій - розташовані між першою і другою перегородками і т. Д. (Між якимись перегородками куль може і не бути). Тому число в розкладки куль по шухлядах дорівнює числу різних рядів з 20 куль і 5 перегородок, тобто одно
На первое место можно разместить любую из пяти цифр, пять На второе место можно разместить любую из четырех цифр, четыре На третье место любую из оставшихся трех цифр, три На все три места результаты выбора умножаем.
5·4·3=60
а) кратны трем те числа, у которых сумма цифр кратна трем
Например, используя цифры 1; 2; 3, сумма цифр которых 1+2=3=6 кратна 3 можно составит шесть чисел, кратных 3:
123; 132;321;312;231;213
Возможностей 4:
1+2+3=6 кратно 3
2+3+4= 9 кратно 3
3+4+5=12 кратно 3
1+3+5=9 кратно 3
В каждой возможности 6 чисел. Всего 24 числа.
б) Кратны четырем те трехзначные числа, у которых две последние цифры кратны 4. Возможны варианты:
*12
*24
*32
*52
На первое место можно разместить любую из оставшихся трех цифр, тремя Всего 3·4=12 чисел
в) кратных 5:
12:
на последнем месте обязательно располагается цифра 5 ( числа кратные 5 оканчиваются на 5 или на 0, 0 у нас нет). На первое место можно выбрать любую из четырех оставшихся цифр - четыре на второе место любую из оставшихся трех - три Всего Подробнее - на -
Объяснение:
Рішення
а) Викладемо кулі в ряд. Для визначення розкладу наших куль по шести скриньок розділимо ряд п'ятьма перегородками на шість груп: перша група для першого ящика, друга - для другого і так далі. Таким чином, число варіантів розкладки куль по шухлядах дорівнює числу в розташування п'яти перегородок. Перегородки можуть стояти на будь-якому з 19 місць (між 20 кулями - 19 проміжків). Тому число їх можливих розташувань одно.
б) Розглянемо ряд з 25 предметів: 20 куль і 5 перегородок, розташованих в довільному порядку. Кожен такий ряд однозначно відповідає деякому розкладки куль по ящиках: в перший ящик потрапляють кулі, розташовані лівіше першої перегородки, в другій - розташовані між першою і другою перегородками і т. Д. (Між якимись перегородками куль може і не бути). Тому число в розкладки куль по шухлядах дорівнює числу різних рядів з 20 куль і 5 перегородок, тобто одно
Всего 60 трехзначных чисел
На первое место можно разместить любую из пяти цифр, пять На второе место можно разместить любую из четырех цифр, четыре На третье место любую из оставшихся трех цифр, три На все три места результаты выбора умножаем.
5·4·3=60
а) кратны трем те числа, у которых сумма цифр кратна трем
Например, используя цифры 1; 2; 3, сумма цифр которых 1+2=3=6 кратна 3 можно составит шесть чисел, кратных 3:
123; 132;321;312;231;213
Возможностей 4:
1+2+3=6 кратно 3
2+3+4= 9 кратно 3
3+4+5=12 кратно 3
1+3+5=9 кратно 3
В каждой возможности 6 чисел. Всего 24 числа.
б) Кратны четырем те трехзначные числа, у которых две последние цифры кратны 4. Возможны варианты:
*12
*24
*32
*52
На первое место можно разместить любую из оставшихся трех цифр, тремя Всего 3·4=12 чисел
в) кратных 5:
12:
на последнем месте обязательно располагается цифра 5 ( числа кратные 5 оканчиваются на 5 или на 0, 0 у нас нет). На первое место можно выбрать любую из четырех оставшихся цифр - четыре на второе место любую из оставшихся трех - три Всего Подробнее - на -