В левой части равенства стоит квадр. корень, который может принимать либо положительные значения, либо ноль. Справа перед корнем стоит минус, значит выражение в правой части равенства либо отрицательное, либо ноль. Отсюда следует, что равенство этих выражений достигается только , если слева и справа будут стоять нули. Найдём нули функций.
Значения корней для обеих частей равенства совпадают лишь при х=1. Поэтому и левая и правая части обращаются в 0 одновременно только при х=1. Поэтому уравнение имеет единственное решение: х=1.
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
В левой части равенства стоит квадр. корень, который может принимать либо положительные значения, либо ноль. Справа перед корнем стоит минус, значит выражение в правой части равенства либо отрицательное, либо ноль. Отсюда следует, что равенство этих выражений достигается только , если слева и справа будут стоять нули.
Найдём нули функций.
Значения корней для обеих частей равенства совпадают лишь при х=1. Поэтому и левая и правая части обращаются в 0 одновременно только при х=1. Поэтому уравнение имеет единственное решение: х=1.
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.