Чтобы решить эту задачу, нужно знать как минимум 2 операции с матрицами:
Сложение/вычитание матриц. Если у тебя есть матрица A с элементами (т.е. на i строке j столбца находится число ), и некоторая другая матрица той же размерности B с элементами , то в итоговой матрице C = A + B элементы , с вычитанием все то же самое, только разность a и b. На практике это выглядит как сумма (или разность) соответствующих чиселУмножение матриц на некоторую константу. Если умножать матрицу A с элементами на некоторое постоянное число C, то C*A = , т.е. умножаете это число на каждый элемент матрицы.
Сначала вырази синусы данных углов через синус углов из первой четверти: sin (–55°) = –sin 55°, потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) = =–sin 60°, sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°. И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус, то sin 35° < sin 55° < sin 60°. Но тогда –sin 35° > –sin 55° > –sin 60°, а поэтому sin 1295° > sin (–55°) > sin 600°. ответ:sin 600°, sin (–55°), 1295°
Объяснение:
Чтобы решить эту задачу, нужно знать как минимум 2 операции с матрицами:
Сложение/вычитание матриц. Если у тебя есть матрица A с элементами (т.е. на i строке j столбца находится число ), и некоторая другая матрица той же размерности B с элементами , то в итоговой матрице C = A + B элементы , с вычитанием все то же самое, только разность a и b. На практике это выглядит как сумма (или разность) соответствующих чиселУмножение матриц на некоторую константу. Если умножать матрицу A с элементами на некоторое постоянное число C, то C*A = , т.е. умножаете это число на каждый элемент матрицы.Теперь давайте найдем по условию 3A
Теперь 2B:
Теперь поэлементно из одного вычитаем другое:
sin (–55°) = –sin 55°,
потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) =
=–sin 60°,
sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°.
И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус,
то sin 35° < sin 55° < sin 60°.
Но тогда –sin 35° > –sin 55° > –sin 60°,
а поэтому sin 1295° > sin (–55°) > sin 600°.
ответ:sin 600°, sin (–55°), 1295°