В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
аолесдвда
аолесдвда
30.01.2020 15:23 •  Алгебра

Можно ли 59 банок консервов разложить в 3 ящика ,так чтобы в третьем ряду было на 9 банок больше,чем в первом,а во втором на 4 банки меньше,чем в третьем

Показать ответ
Ответ:
Krutoyabrikos
Krutoyabrikos
17.12.2021 01:19
Дана функция f(x)=x³-3x²-9x.

Общая схема исследования и построения графика функции

 При построении графиков функций можно  придерживаться следующего плана:

 1. Найти область определения функции и область значений функции, выявить точки разрыва, если они есть - их нет, поэтому D(f) = R.

2. Выяснить, является ли функция четной или нечетной - ни та, ни другая.

3. Выяснить, является ли функция периодической - нет.

4. Найти точки пересечения графика с осями координат (нули функции).

Пересечение с осью ОУ: х = 0, у = 0,

                     с осью ОХ: у = 0, x³-3x²-9x = 0, вынесем х за скобки:

                    х(x²3x²-9) = 0, отсюда получаем значение первого корня:

                    х₁ = 0, далее приравниваем нулю квадратный трёхчлен:

x² - 3x - 9  = 0.

Квадратное уравнение, решаем относительно x: 

Ищем дискриминант:

D=(-3)^2-4*1*(-9)=9-4*(-9)=9-(-4*9)=9-(-36)=9+36=45;

Дискриминант больше 0, уравнение имеет 2 корня:

x₂=(2root45-(-3))/(2*1)=(√45+3)/2=√45/2+3/2 = 3√2/2+1.5 ≈ 4.85410197;

x₃=(-√45-(-3))/(2*1)=(-√45+3)/2=-√45/2+3/2=-3√2/2+1.5≈-1.85410197.

5. Найти асимптоты графика - не имеет.

6. Вычислить производную функции f'(x) и определить критические точки.

f(x)=x³-3x²-9x,  f'(x)=3x²-6x-9 приравниваем нулю:

3x²-6x-9 = 0.

Квадратное уравнение, решаем относительно x: 

Ищем дискриминант:

D=(-6)^2-4*3*(-9)=36-4*3*(-9)=36-12*(-9)=36-(-12*9)=36-(-108)=36+108=144;

Дискриминант больше 0, уравнение имеет 2 корня:

x₁=(√144-(-6))/(2*3)=(12-(-6))/(2*3)=(12+6)/(2*3)=18/(2*3)=18/6=3;

x₂=(-√144-(-6))/(2*3)=(-12-(-6))/(2*3)=(-12+6)/(2*3)=-6/(2*3)=-6/6=-1.

Критические точки x₁ = 3, x₂ = -1.

7. Найти промежутки монотонности функции: (-∞;-1), (-1;3),(3;+∞).

8. Определить экстремумы функции f(x).

Надо определить знаки производной на промежутках монотонности.

х = -2, у' = 3*4 + 12 - 9 =  15  функция возрастающая,

х = 2,  у' =  3*4 - 12 - 9 = -9    функция убывающая,

х = 4,  у' = 3*16 - 24 - 9 = 15   функция возрастающая. 

9. Вычислить вторую производную f''(x) = 6х - 6 = 6(х - 1).

10. Определить направление выпуклости графика и точки перегиба:

функция вогнутая на промежутках [1, oo),
выпуклая на промежутках (-oo, 1]

11. Построить график, используя полученные результаты исследования.

 

0,0(0 оценок)
Ответ:
джопер
джопер
05.08.2021 14:25

Таблица точек

 x y

-3.0 -18

-2.5 -8.1

-2.0 -2

-1.5 1.1

-1.0 2

-0.5 1.4

0 0

0.5 -1.4

1.0 -2

1.5 -1.1

2.0 2

2.5 8.1

3.0 18

 Точка пересечения графика функции с осью координат Y:  

График пересекает ось Y, когда x равняется 0: подставляем x=0 в x³-3x.

у =0³-3*0 = 0,

Результат: y=0. Точка: (0; 0.

Точки пересечения графика функции с осью координат X:  

График функции пересекает ось X при y=0, значит, нам надо решить уравнение:  

x³-3x = 0

Решаем это уравнение и его корни будут точками пересечения с X:

x (х²-3) = 0,

х1 = 0,  х2,3 = +-√3.

Результат: y=0. Точки: (0; -√3), (0; 0) и (0; √3).

Экстремумы функции:  

Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:  

y'=3x² – 3 = 0

Решаем это уравнение и его корни будут экстремумами:  

3(х²-1) = 0,

х1 = 1,  х2  = -1.

Результат: y’=0. Точки: (-1; 2) и (1; -2). Это критические точки.

Интервалы возрастания и убывания функции:  

Найдем значения производной между критическими точками:  

x = -2 -1 0          1             2

y' = 9 0 -3          0               9.  

• Минимум функции в точке: х = -1,

• Максимум функции в точке: х = 1.

• Возрастает на промежутках: (-∞; -1) U (1; ∞)  

• Убывает на промежутке: (-1; 1)  

Точки перегибов графика функции:  

Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции:  

y'' = 6x  = 0

Отсюда точка перегиба х = 0

Точка: (0; 0).

Интервалы выпуклости, вогнутости:  

Находим знаки второй производной на промежутках (-∞; 1) и (1; +∞).

                             х =     -1        0         1

                             y'' =    -6        0          6.

Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.

• Вогнутая на промежутках: (0; ∞),

• Выпуклая на промежутках: (-∞; 0)  

Вертикальные асимптоты – нет.  

Горизонтальные асимптоты графика функции:  

Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:  

• lim x3-3x, x->+∞ = ∞, значит, горизонтальной асимптоты справа не существует

• lim x3-3x, x->-∞ = -∞, значит, горизонтальной асимптоты слева не существует

Наклонные асимптоты графика функции:  

Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:  

• lim x3-3x/x, x->+oo = oo, значит, наклонной асимптоты справа не существует.

• lim x3-3x/x, x->-oo = oo, значит, наклонной асимптоты слева не существует.

Четность и нечетность функции:  

Проверим функцию -  четна или нечетна с соотношений f(-x)=f(x) и f(-x)=-f(x). Итак, проверяем:  

• (-x3)-3(-x) =  -x3+3x   нет,

• (-x3)-3(-x) = -(x3-3x) – да, значит, функция является нечётной.


Решить. если можно, то подробно
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота