Графики функций y = -4x + 6 и y = kx - 2 пересекаются в точке A(1; 2). Найди значение k. Построй в одной системе координат графики этих функций.
1) Найти k.
Подставить во второе уравнение известные значения х и у (координаты точки А) и вычислить k:
y = kx - 2; A(1; 2);
2 = k*1 - 2
k = 2 + 2
k = 4;
Уравнение имеет вид: у = 4х - 2.
2) Построить графики. Графики линейной функции, прямые линии. Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
В решении.
Объяснение:
Графики функций y = -4x + 6 и y = kx - 2 пересекаются в точке A(1; 2). Найди значение k. Построй в одной системе координат графики этих функций.
1) Найти k.
Подставить во второе уравнение известные значения х и у (координаты точки А) и вычислить k:
y = kx - 2; A(1; 2);
2 = k*1 - 2
k = 2 + 2
k = 4;
Уравнение имеет вид: у = 4х - 2.
2) Построить графики. Графики линейной функции, прямые линии. Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
y = -4x + 6 у = 4х - 2
Таблицы:
х -1 0 1 х -1 0 1
у 10 6 2 у -6 -2 2
а) y=(x-2) в 4 степени
1)Четная
2)Определена на всей области определения
3)Вершина в точке (2;0)
4)Ветви направлены вверх.
5)До x<2 убывает.
6)При x>4 возрастает.
б)0.5sinx+2
1) Определена на всей области определения
2) Нечетная
3) Периодическая
4) Возрастает и убывает
5) Знакопостоянна на промежутках
6) Непрерывна
7) График называеться синусойдой
в)y=0.5cosx+2
1)Определена на всей области определения
2)Четная
3)Периодическая
4)Область значений отрезок [ 1,5; 2,5];
5)Убывает на промежутках [KeZ; п+2пk] и возрастает на промежутках [п+2пk;KeZ]
Г)y=-(x+2)в 4 степени.
1)Определена на всей области определения
2) Вершина в точке (-2;0)
3)Возростает (-бесконечности;-2);
4)Убывает (-2;+бесконечности);
5)Ветви направлены в низ
6) Область значений (0;-бесконечности)
7) Ость оссимптот: x=-2
8)Наибольшее значение при y=0; x=-2
9) Наименьшего значения не существует