В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
arshin1
arshin1
16.02.2021 19:38 •  Алгебра

Можно развернутое решение.. заранее огромное ). докажите, что при х принадлежит справедливо неравенство sinx> xcosx.

Показать ответ
Ответ:
приветЯ11
приветЯ11
23.05.2020 16:17
Решение: Рассмотрим функцию f(x)=sin x-x*cos(x) на промежутке [0; pi\2]. Она непрерывна на этом промежутке и для каждого х из этого промежутка существует проиводная. Ищем проиводную: f’(x)=cos x-cos x+x*sin x=x*sin x f’(x)>0 на промежутке (0; pi\2),значит f(x) возрастает на (0; pi\2), f(0)=sin 0+0*cos 0=0 f(0)=0 Значит при х є (0; pi\2) f(x)>f(0)=0 или sin x-x*cos(x)>0, то есть sinx>xcosx, что и требовалось доказать.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота