Объяснение:1. Известно, что а > b. а) Умножим обе части неравенства а > b на 21, получим 21а > 21b; б) Умножим обе части неравенства а > b на (-3,2), получим -3,2а < -3,2b; в) а + 8 > b + 8.
4. Оцените периметр и площадь прямоугольника со сторонами а см и b см, если известно, что 1,5 < а < 1,6 и 3,2 < b < 3,3. ⇒ 4,7 < (a+b) < 4,9 ⇒ 4,7 ·2 < (a+b)·2 < 4,9·2 ⇒ 9,4 < P < 9,8. Теперь оценим площадь: неравенства одинаковых знаков с положительными членами можно почленно умножать, значит 1,5 ·3,2 < ab < 1,6 · 3,3 ⇒ 4,8 < S < 5,28
-(2(cosπ/3 +isinπ/3))³/√(2(cosπ/4 -isinπ/4))²⁶ =
-2³(cos3*π/3 + isin3*π/3) /2¹³(cos26*π/4 -isin26*π/4) =
-8(cosπ + isinπ) /2¹³(cos13π/2 -isin13π/2) = -8(-1+0)/2¹³(0 -i) =-2³/2¹³i = (1/21⁰)i.
* * * * * *
z =a+ib ; z =r(cosα + i sinα ) ; r =√(a²+b²) ; α =arctq(b/a)
(r(cosα+isinα) ) ^n =r^k(cosnα +i sinnα) ;
(r₁(cosα₁+isinα₁)*r₂(cosα₂+isinα₂) =(r₁*r₂) (cos(α₁+α₂) +isin(α₁+α₂)) ;
(r₁(cosα₁+isinα₁)/r₂(cosα₂+isinα₂) =(r₁/r₂) (cos(α₁-α₂) +isin(α₁-α₂)) ;
z₁ =(1+i√3) ,
модуль этого числа: r₁ =√(1² +(√3)²) =√(1 +3)=2;
аргумент этого числа : tqα =b/a =√3/1=√3 ⇒α=60° или α= π/3 радиан.
z₁ =(1+i√3) =2(cosπ/3 +isinπ/3) .
Объяснение:1. Известно, что а > b. а) Умножим обе части неравенства а > b на 21, получим 21а > 21b; б) Умножим обе части неравенства а > b на (-3,2), получим -3,2а < -3,2b; в) а + 8 > b + 8.
2. Сложим почленно неравенства 3,6а > 4,7b и -1,8а > -1,9b ⇒3,6а-1,8а> 4,7b-1,9b ⇒1,8a>2,8b
4. Оцените периметр и площадь прямоугольника со сторонами а см и b см, если известно, что 1,5 < а < 1,6 и 3,2 < b < 3,3. ⇒ 4,7 < (a+b) < 4,9 ⇒ 4,7 ·2 < (a+b)·2 < 4,9·2 ⇒ 9,4 < P < 9,8. Теперь оценим площадь: неравенства одинаковых знаков с положительными членами можно почленно умножать, значит 1,5 ·3,2 < ab < 1,6 · 3,3 ⇒ 4,8 < S < 5,28
5. Докажите неравенство: а) (х + 7)² > х(х + 14) ⇒x²+14x+49 -x² -14x= 49>0, чтд б) b² + 5 ≥ 10(b - 2) ⇒ b² + 5 - 10b +20= (b²-10b+25= (b-5)²≥0,чтд