На альбоме 15 страниц. На страницах этого альбома нужно поместить 5 различных фотографий. Сколькими это можно сделать, если ни одна страница альбома не должна содержать более одной фотографии?
Выбрать два черных шара можно а два белых шара - По правилу сложения, всего выбрать одноцветных шаров можно
Всего все возможных событий:
Искомая вероятность:
Вероятность того, что первый вынутый шар является черным равна 3/9 = 1/3, и поскольку один шар уже использован, то вероятность того, что второй вынутый шар окажется черным равна 2/8 = 1/4. Поскольку события независимы, то вероятность того, что вынутые два шара окажутся черными равна 1/4*1/3=1/12
Вероятность того, что первый вынутый шар является белым равна 6/9 = 2/3, и поскольку один шар уже использован, то вероятность того, что второй вынутый шар окажется белым равна 5/8. Поскольку события независимы, то вероятность того, что вынутые два шара окажутся белыми равна 2/3*5/8=10/24=5/12
Тогда искомая вероятность по теореме сложения: P = 1/12 + 5/12 = 6/12 = 1/2
Сумма квадратов этих чисел равна (2x + 1)² + (2x + 3)² + (2x + 5)² .
Удвоенное произведение наибольшего и наименьшего чисел равно:
2(2x + 1)(2x + 5).
Вычтем из большего меньшее и получим 41.
(2x + 1)² + (2x + 3)² + (2x + 5)² - 2(2x + 1)(2x + 5) = 41
4x² + 4x + 1 + 4x² + 12x + 9 + 4x² + 20x + 25 - 2(4x² - 10x + 2x + 5) - 41 = 0
12x² + 36x + 35 - 8x² - 24x - 10 - 41 = 0
4x² + 12x - 16 = 0
x² + 3x - 4 = 0
x₁ = 1 x₂ = - 4
Корни найдены по теореме, обратной теореме Виетта.
2 * 1 + 1 = 3 - первое число 2 * (- 4) + 1 = - 7 - первое число
3 + 2 = 5 - второе число - 7 + 2 = - 5 - второе число
5 + 2 = 7 - третье число - 5 + 2 = - 3 - третье число
Всего все возможных событий:
Искомая вероятность:
Вероятность того, что первый вынутый шар является черным равна 3/9 = 1/3, и поскольку один шар уже использован, то вероятность того, что второй вынутый шар окажется черным равна 2/8 = 1/4. Поскольку события независимы, то вероятность того, что вынутые два шара окажутся черными равна 1/4*1/3=1/12
Вероятность того, что первый вынутый шар является белым равна 6/9 = 2/3, и поскольку один шар уже использован, то вероятность того, что второй вынутый шар окажется белым равна 5/8. Поскольку события независимы, то вероятность того, что вынутые два шара окажутся белыми равна 2/3*5/8=10/24=5/12
Тогда искомая вероятность по теореме сложения: P = 1/12 + 5/12 = 6/12 = 1/2