Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
Само решение написано с красной строки, остальное (кроме ОДЗ) - пояснения.
ОДЗ: т.к. знаменатель не равен 0,
1)
2)
3)
Здесь задание на применение формулы разности квадратов, которая выглядит следующим образом: .
Перенесем все для удобства в левую часть.
Теперь приведем две первые дроби к общему знаменателю .
Запишем их в одну общую дробь.
Заметим, что в знаменателе вычитаемого тоже есть формула разности квадратов, т.е.
В уменьшаемом раскроем скобки в числителе с формул квадрата разности и квадрата суммы:
1)
2)
Раскроем скобки в числителе первой дроби еще раз и упростим получившееся выражение.
Теперь перенесем вычитаемое в правую часть и решим уравнение пропорцией.
(в последней строке скобки должна быть не {, а [, редактор не позволяет их поставить, к сожалению)Оба корня не подходят по ОДЗ => решений нет, ∈∅
ответ: ∈∅.
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.