На дослідній ділянці посіяли 1500 квасолин сорту Запашна. Знайти: а) ймовірність того, що сходи дадуть рівно 1200 квасолин, якщо схожість цього сорту дорівнює 90%; б) не менше 1200 і не більше 1400. З ПОЯСНЕННЯМ
методом подбора легко определить два корня уравнения:
x=3;
x=-4;
Но уравнение у нас имеет высшую степень 4, поэтому и корней оно имеет ровно 4. Попытаемся найти еще два недостающих корня. Приведем многочлен к стандартному виду:
(x²-4)(x²+2x-3)=60;
x⁴+2x³-3x²-4x²-8x+12-60=0;
x⁴+2x³-7x²-8x-48=0.
С учетом найденных двух корней:
(x-3)(x+4)=x²+x-12;
Разделим многочлен на известный множитель:
x⁴+2x³-7x²-8x-48 l x²+x-12
x⁴+x³-12x² l x²+x+4
x³+5x²-8x
x³+ x²-12x
4x²+4x-48
4x²+4x-48
0
Теперь наш многочлен имеет вид:
(x-3)(x+4)(x²+x+4)=0;
Попробуем найти недостающие два корня уравнения (разложить на мноители квадратный трехчлен x²+x+4)
x²+x+4=0; D=1-16<0;
два оставшихся корня - комплексные, т.к. √D=i√15;
x₁₂=0,5(-1±i√15);
x₁=0,5+(i√15)/2; x₂=0,5-(i√15)/2;
Многочлен разлогается на множетели следующим образом:
1. Упрощаем: 2x²-3х -22 - x² + 4=0
x² - 3х - 18=0 и x²-4 не равно 0
1.Д= 9²
х1= 6
х2= -3
2.х= 2 и х=-2
2. 4x²- 11х -3=0 и 3-х не равно 0
1.Д=13²
х1=-0.25
х2=3
2. х не равен 3
3. (х+1)(3х-9)+ (х-1)(х+6) - 3(х-1)(х+1) все это делить на (х-1)(х+1)
3x²-9х+3х-9+x²+6х-х-6-3x²+3 делить на (х-1)(х+1)
-12+x²-х делить на (х-1)(х+1)
-12+x²-х=0
Д=12 в квадрате
х1=-3
х2= 4
И х не равен 1 и -1
4. Упрощаем:
(5х-2)(х+3)=(3х+2)(2х+1)
(5х-2)(х+3)-(3х+2)(2х+1)=0
5x²+15х-2х-6-6x²-7х-2=0
-x²+6х-8=0
Д=4²
х1=2
х2=4
х не равен -1/2 и -3
Объяснение:
корни многочлена
x₁=3;
x₂=-4;
x₃=0,5+(i√15)/2;
x₄=0,5-(i√15)/2.
Объяснение:
запишем все целые делители числа 60:
60(±1; ±2; ±3; ±4; ±5; ±6; ±10; ±15; ±20; ±30; ±60).
учтем, что x≠1; x≠2; x≠-2; x≠-3, и далее
методом подбора легко определить два корня уравнения:
x=3;
x=-4;
Но уравнение у нас имеет высшую степень 4, поэтому и корней оно имеет ровно 4. Попытаемся найти еще два недостающих корня. Приведем многочлен к стандартному виду:
(x²-4)(x²+2x-3)=60;
x⁴+2x³-3x²-4x²-8x+12-60=0;
x⁴+2x³-7x²-8x-48=0.
С учетом найденных двух корней:
(x-3)(x+4)=x²+x-12;
Разделим многочлен на известный множитель:
x⁴+2x³-7x²-8x-48 l x²+x-12
x⁴+x³-12x² l x²+x+4
x³+5x²-8x
x³+ x²-12x
4x²+4x-48
4x²+4x-48
0
Теперь наш многочлен имеет вид:
(x-3)(x+4)(x²+x+4)=0;
Попробуем найти недостающие два корня уравнения (разложить на мноители квадратный трехчлен x²+x+4)
x²+x+4=0; D=1-16<0;
два оставшихся корня - комплексные, т.к. √D=i√15;
x₁₂=0,5(-1±i√15);
x₁=0,5+(i√15)/2; x₂=0,5-(i√15)/2;
Многочлен разлогается на множетели следующим образом:
(x-3)(x+4)(x+0,5-(i√15)/2)(x-0,5+(i√15)/2)=0