На двух поточных линиях производства одинаковые изделия, которые поступают в отк. производительность первой поточной линии втрое больше производительности второй. первая поточная линия в среднем производит 75% изделий 1 сорта, а вторая 85%. наудачу взятое отк на проверку изделия оказалось первого сорта. найти вероятность того, что, это изделие произведено на первом станке.
ответ: 40,3 км/час.
Объяснение:
Решение.
Пусть собственная скорость катера равна х км/час.
Тогда скорость по течению равна х+4 км/час,
a скорость против течения равна х-4 км/час.
Время затраченное на прохождение по течению равно
t1=S/v1=48/(x+4),
а время на прохождения против течения равно
t2=S/v2 = 48/(x-4).
Общее время равно 2 часа 24 минуты =2,4 часа.
Составим уравнение:
48/(х+4) + 48/(х-4) = 2,4;
48(x-4)+48(x+4)=2.4(x+4)(x-4);
48x - 192 + 48x+192 = 2.4x² - 38.4;
2.4x² - 96x - 38.4 =0;
x² - 40x - 16=0;
D=(-40)²-4*1*(-16)=1600+64=1664>0 - 2 корня.
х1,2=(-(-40) ±√1664) / 2=(40±8√26)/2 = 20±4√26;
х1=40,3 х2= -0,396 - не соответствует условию.
х = 40,3 км/час- собственная скорость катера.
Проверим
48/(40,3+4) + 48/(40,3-4)=2,4;
48/44,3 + 48/36,3 = 2,4;
1,08 + 1,32 = 2,4;
2,4=2,4.
Все верно!
Из условия, общий объем (масса) груза равняется 10ф.
Из этого получаем, что 10ф / (m+а) < 5.
Условие о том, что недогрузка запрещена, можно трактовать как то, что 10ф / (m+а) — это целое число.
Однако, даже из этого мы получим всего лишь набор уравнений:
5ф = 2(m+а)
10ф = m+а
5ф = m+а
10ф = m+а
все данные уравнения имеют решения в целых числах
ответ (от 1 до 4 перевозок)
Еще можно решить методом подбора,но там очень много нужно подбирать