Y=f(x₀)+f'(x₀(x-x₀) - уравнение касательной. По условию касательная параллельна прямой y=-2x+6, значит коэффициент наклона прямой равен -2, а коэффициент наклона касательной есть значение производной в точке касания. Найдём точки, в которых производная функции y=-x²+4 равна -2. Сначала найдём производную y'=(-x²+4)'=-2x Приравняем производную к числу -2 -2x=-2 x₀=1 Найдём уравнение касательной к графику функции y=-x²+4 в точке x₀=1. Найдем значение функции в точке x₀=1. f(1)=-1²+4=3 f'(1)=-2 (по условию) Подставим эти значения в уравнение касательной y=3+(-2)(x-1)=3-2x+2=-2x+5
Пусть хx литров в минуту пропускает вторая труба. тогда первая труба пропускает x-4x−4 литров в минуту. зная, что вторая труба заполнит резервуар объемом 320 литров на 10 минут быстрее, чем первая труба заполнит резервуар объёмом 200 литров, составим уравнение: \frac{320}x+10=\frac{200}{x-4}x320+10=x−4200 \frac{320(x^2-4x)}x+10(x^2-4x)=\frac{200(x^2-4x)}{x-4}x320(x2−4x)+10(x2−4x)=x−4200(x2−4x) 320(x-4)+10(x^2-4x)=200x320(x−4)+10(x2−4x)=200x 320x-1280+10x^2-40x=200x320x−1280+10x2−40x=200x 320x-1280+10x^2-40x-200x=0320x−1280+10x2−40x−200x=0 10x^2+80x-1280=010x2+80x−1280=0 x^2+8x-128=0x2+8x−128=0 d_1=4^2+128=144=12^2d1=42+128=144=122 x_1=-4+12=8x1=−4+12=8 x_2=-4-12=-16x2=−4−12=−16 - не удовлетворяет условию значит первая труба пропускает 8 литров в минуту ответ: 8 литров в минуту
По условию касательная параллельна прямой y=-2x+6, значит коэффициент наклона прямой равен -2, а коэффициент наклона касательной есть значение производной в точке касания. Найдём точки, в которых производная функции y=-x²+4 равна -2. Сначала найдём производную
y'=(-x²+4)'=-2x
Приравняем производную к числу -2
-2x=-2
x₀=1
Найдём уравнение касательной к графику функции y=-x²+4 в точке x₀=1.
Найдем значение функции в точке x₀=1.
f(1)=-1²+4=3
f'(1)=-2 (по условию)
Подставим эти значения в уравнение касательной
y=3+(-2)(x-1)=3-2x+2=-2x+5