Пусть a рационально, b иррационально, c рационально.
Предположим что:
Следовательно: - т.е. иррациональное число равно разности двух рациональных чисел. А мы знаем что такое совершенно невозможно!Так как разность двух рациональных чисел, всегда рационально.Но b иррационально! Поэтому наше предположение не верно, и сумма рационального и иррационального числа = иррациональному числу. Ч.Т.Д.
Опять же, ситуация как и в первом примере. Следовательно это невозможно и разность рационального и иррационального = всегда иррациональному. Ч.Т.Д.
11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
Предположим что:
Следовательно:
- т.е. иррациональное число равно разности двух рациональных чисел. А мы знаем что такое совершенно невозможно!Так как разность двух рациональных чисел, всегда рационально.Но b иррационально!
Поэтому наше предположение не верно, и сумма рационального и иррационального числа = иррациональному числу.
Ч.Т.Д.
Опять же, ситуация как и в первом примере. Следовательно это невозможно и разность рационального и иррационального = всегда иррациональному.
Ч.Т.Д.
п<11п/9,
11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина.
т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0.
3,14<п<3,15.
3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5,
5<6,28=2*3,14<2п<2*3,15.
(3п/2)<5<2п.
Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0.
(3п/2)=1,5п<1,6п<2п.
Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0.
ответ. в).