На графике представлена итоги Олимпиады по математике учащихся седьмых восьмых классов по оси ОX 1количество набранных и пойти 2у количество учащихся более
Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3.
Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π.
Это в том случае, если косинус х.( без скобок).
Решение
Пусть скорость 2-ого велосипедиста х км/ч,
а скорость 1-ого велосипедиста (х+1) км/ч.
Тогда время, затраченное первым велосипедистом - 90/(х+1) ч,
а время, затраченное вторым велосипедистом - 90/х ч.
Составим уравнение:
90/(х+1)+1=90/х
(90х + х² + х — 90х + 90)/(х(х+1)) = 0
х² + х - 90 = 0
D = 1 + 4*90 = 361
x₁ = (- 1 + 1 9)/2 = 9
x₂ = (- 1 - 19)/2 = - 10 — не удовлетворяет условию задачи.
9 км/ ч - скорость 2-ого велосипедиста
1) 9 + 1 = 10 км/ч - скорость 1-ого велосипедиста
ответ: 10 км/ч; 9 км/ч.