Ясно, что если это сосуд, и его нужно заполнить полностью, то вершина его внизу - это сосуд вроде бокала. В противном случае через вершину конусовидный сосуд не заполнить до конца. Поскольку речь идет об одном и том же сосуде, полный его объем и объем заполненной части - подобные тела. Отношение объемов подобных тел равно кубу отношений их линейных размеров, т.е. кубу коэффициента подобия. Если высота заполненной части сосуда равна h, а полной - Н, то k=Н:h=2 V:V₁=k³= 2³=8 V=8*V₁=560 мл Долить нужно V-V₁=560-70=490 мл
Мы знаем, что есть признак делимости числа на 9(если сумма цифр числа делится на 9, то и число делится на 9). Значит, что число должно делится не только на 9, но и на 10, для делимости на 90. 3+5=8. Это сумма известных нам цифр числа Теперь нам нужно найти две цифры, в сумме дающие 10.(две потому что нужна еще делимость на 10). Это цифры 8+2, 6+4, 4+6, 2+8. 35280. Сумма цифр равна 18(число кратно 9), а также оканчивается на 0(признак делимости на 10) Далее, можно тогда и 35820. 35460, 35640. ответ:35460, 35640, 35820, 35280.
Поскольку речь идет об одном и том же сосуде, полный его объем и объем заполненной части - подобные тела. Отношение объемов подобных тел равно кубу отношений их линейных размеров, т.е. кубу коэффициента подобия.
Если высота заполненной части сосуда равна h, а полной - Н, то
k=Н:h=2
V:V₁=k³= 2³=8
V=8*V₁=560 мл
Долить нужно
V-V₁=560-70=490 мл
3+5=8. Это сумма известных нам цифр числа
Теперь нам нужно найти две цифры, в сумме дающие 10.(две потому что нужна еще делимость на 10). Это цифры 8+2, 6+4, 4+6, 2+8.
35280. Сумма цифр равна 18(число кратно 9), а также оканчивается на 0(признак делимости на 10)
Далее, можно тогда и 35820.
35460, 35640.
ответ:35460, 35640, 35820, 35280.