Строишь график функции y = 3x² и сдвигаешь его на 2,5 единичных отрезка влево. (Ты вообще можешь сразу провести пунктиром линию x = 2,5 (это вертикальная линия, которая пересекается с осью Оx в точке 2,5) и строить свой график, как будто твой пунктир - это ось Оy). График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12). Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
Решение: {a3+a7=24 {a3*a7=128. По сумме двух чисел и их произведению составим новое квадратное уравнение,у которого второй коэффициент равен сумме этих чисел с противоположным знаком,а свободный член равен их произведению; t^2-24t+128=0 .По обратной теореме Виета его корни равны t1=16,t2=8. Возможны два варианта; 1) {a3=16 или {a3=8 {a7=8, {a7=16, В первом случае a7=a3+4d,8=16+4d, отсюда d=-2 Во втором случае a7=a3+4d, 16=8+4d, отсюда d=2. Так как по условию прогрессия возрастающая, то d=2. ответ: 2.
График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12).
Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
{a3+a7=24
{a3*a7=128. По сумме двух чисел и их произведению составим новое
квадратное уравнение,у которого второй коэффициент равен сумме этих чисел с противоположным знаком,а свободный член равен их произведению; t^2-24t+128=0 .По обратной теореме Виета его корни
равны t1=16,t2=8. Возможны два варианта; 1) {a3=16 или {a3=8
{a7=8, {a7=16,
В первом случае a7=a3+4d,8=16+4d, отсюда d=-2
Во втором случае a7=a3+4d, 16=8+4d, отсюда d=2.
Так как по условию прогрессия возрастающая, то d=2.
ответ: 2.