На карте путешественник отметил те города и поселения, которые хочет посмотреть, и провёл все те дороги, которые между ними проложены. Оказывается, что из каждого города выходят 3 дороги к поселениям и 6 — к другим городам. А от каждого поселения — 2 к другим поселениям и 4 к городам. Всего в планах путешественника посмотреть 42 населённых пункт(-а, -ов). Сколько числится городов в планах путешественника? Сколько числится поселений в планах путешественника?
2) Вершина параболы находится в точке х = -в / 2а = -2 / 2*1 = -1.
у = (-1)² +2*(-1) - 3 = 1-2-3 = -4.
Точки пересечения графика оси х соответствуют значению у = 0:
x² + 2x - 3 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=2^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√16-2)/(2*1)=(4-2)/2=2/2=1;
x₂=(-√16-2)/(2*1)=(-4-2)/2=-6/2=-3.
Функція набуває додатних значень при x < -3 и x > 1.
1) x^2 - 2bx - 1 = 0
D/4 = b^2 - 1(-1) = b^2+1
x1 = b - √(b^2+1)
x2 = b + √(b^2+1)
Нам нужно, чтобы оба корня были по модули не больше 2.
Так как x1 < x2, то это условие равносильно такой системе:
{ b - √(b^2+1) ≥ -2
{ b + √(b^2+1) ≤ 2
Оставляем корень с одной стороны, а остальное с другой.
{ b+2 ≥ √(b^2+1)
{ √(b^2+1) ≤ 2-b
Корень арифметический, то есть неотрицательный. Значит, область определения:
{ b + 2 ≥ 0; b ≥ -2
{ 2 - b ≥ 0; b ≤ 2
b € [-2; 2]
Возводим в квадрат оба неравенства
{ b^2 + 4b + 4 ≥ b^2 + 1
{ b^2 + 1 ≤ b^2 - 4b + 4
Приводим подобные:
{ 4b ≥ -3; b ≥ -3/4
{ 4b ≤ 3; b ≤ 3/4
Оба значения входят в обл.опр. [-2; 2].
b € [-3/4; 3/4]
2) x^2 - 2mx + (m^2-1) = 0
D/4 = m^2 - (m^2-1) = 1 x1 = m - 1 >-2; m > -1
x2 = m + 1 <4; m < 3
m € (-1; 3)
Наибольшее целое m равно 2.