y=x³-6x²+9 на отрезке [ -1;5 ]
Область определения х-любое.
1)Промежутки возрастания и убывания.
у'=(х³-6х²+9)'=3х²-12х=3х(х-4)=3.
Критические точки х=0,х=-4 , при у'=0.
у'>0. , 3х(х-4)>0
(0)(4) , возрастает при х∈(-∞; 0) и ( 4;+∞) .
Т.к. функция определена и непрерывна при любом х, то можно включит концы отрезка х∈(-∞; 0] и [ 4;+∞)
Если у'<0 . то функция убывает .
Используя схему выше ⇒ х∈[ 0; 4] .
2)Экстремумы.
у' + - +
(0)(4)
у возр max убыв min возр
х=0 точка максимума , у(0)=y=0³-6*0²+9=9
х=4 точка минимума , у(4)=4³-6*4²+9=- 23
Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
Найменше значення функції g(2)=7 і g(4)=7
y=x³-6x²+9 на отрезке [ -1;5 ]
Область определения х-любое.
1)Промежутки возрастания и убывания.
у'=(х³-6х²+9)'=3х²-12х=3х(х-4)=3.
Критические точки х=0,х=-4 , при у'=0.
у'>0. , 3х(х-4)>0
(0)(4) , возрастает при х∈(-∞; 0) и ( 4;+∞) .
Т.к. функция определена и непрерывна при любом х, то можно включит концы отрезка х∈(-∞; 0] и [ 4;+∞)
Если у'<0 . то функция убывает .
Используя схему выше ⇒ х∈[ 0; 4] .
2)Экстремумы.
у' + - +
(0)(4)
у возр max убыв min возр
х=0 точка максимума , у(0)=y=0³-6*0²+9=9
х=4 точка минимума , у(4)=4³-6*4²+9=- 23
Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4)=7