1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
Объяснение:Скорость парохода в стоячей воде обозначим v км/ч. Скорость течения нам известна - 4 км/ч. По течению пароход км со скоростью v + 4 км/ч, против течения еще 48 км со скоростью v - 4 км/ч, и затратил на все это 5 ч времени. Составляем уравнение: 48/(v + 4) + 48/(v - 4) = 5 переносим 5 влево и приводим к общему знаменателю: [ 48*(v - 4) + 48*(v + 4) - 5(v + 4)(v - 4) ] / [ (v + 4)(v - 4) ] = 0 Числитель приравниваем к 0 и раскрываем скобки: 48v - 4*48 + 48v + 4*48 - 5(v^2 - 16) = 0 Раскрываем скобки и приводим подобные: 96v - 5v^2 + 80 = 0 Меняем знак: 5v^2 - 96v - 80 = 0 D/4 = 48^2 + 5*80 = 2304 + 400 = 2704 = 52^2 v1 = (48 - 52) / 5 < 0 v2 = (48 + 52) / 5 = 20 ответ: 20 км/ч.
х=3+у
3(3+у)+у=5
9+3у+у=5
4у=-4
у=-1
Подставим найденное значение у в выраженное нами значение х:
х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно.
3*2+(-1)=6-1=5 - верно.
х=2, у=-1.
Б) Выразим у из первого уравнения системы и подставим во второе:
у=4-х²
2*(4-х²)-х=7
8-2х²-х=7
2х²+х-1=0
Д=1+8=9
х1=(-1+3):4=1/2
х2=(-1-3):4=-1
у=4-х²
При х1=1/2, у1=4-1/4=3 целых 3/4
При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое).
Подставляем:
4+(-2)=2
4-2=2
2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.