раз по условию задачи корни уравнения противоположны, то
(-b+корень из дискриминанта)/2a = - (-b-корень из дискриминанта)/2a
получается -b = b, следовательно b = 0
в нашем случае b это pp-9
pp-9=0, следовательно p = 3 или p = -3
допустим p = 3, тогда
6xx - 15 + 2 = 0
6xx = 13
x = +-корень из (13/6)
допустим p = -3, тогда
6xx + 15 + 2 = 0
6xx = -17
т.е. х получается комплексное число (я не знаю в каком сейчас классе их изучают)
значит скорей всего допустимое только p = 3, и х = +-корень из (13/6)
250 – 100%
X - 6% отсюда x=15граммов (значит в растворе будет 15 граммов этого вещества)
Дальше предположим что мы взяли по 100 граммов с каждого раствора то получается
4 гр. С 1-го раствора т 9гр. Со второго и того 13 граммов вещества…и нам необходимо получить из 50 граммов 2 грамма вещества
Берем эти 50 граммов 1-го раствора так как 50гр.-100%
X гр.- 4% отсюда x=2
И так необходимо взять 150 грамм четырёхпроцентного и 100 грамм девятипроцентного
раз по условию задачи корни уравнения противоположны, то
(-b+корень из дискриминанта)/2a = - (-b-корень из дискриминанта)/2a
получается -b = b, следовательно b = 0
в нашем случае b это pp-9
pp-9=0, следовательно p = 3 или p = -3
допустим p = 3, тогда
6xx - 15 + 2 = 0
6xx = 13
x = +-корень из (13/6)
допустим p = -3, тогда
6xx + 15 + 2 = 0
6xx = -17
т.е. х получается комплексное число (я не знаю в каком сейчас классе их изучают)
значит скорей всего допустимое только p = 3, и х = +-корень из (13/6)
250 – 100%
X - 6% отсюда x=15граммов (значит в растворе будет 15 граммов этого вещества)
Дальше предположим что мы взяли по 100 граммов с каждого раствора то получается
4 гр. С 1-го раствора т 9гр. Со второго и того 13 граммов вещества…и нам необходимо получить из 50 граммов 2 грамма вещества
Берем эти 50 граммов 1-го раствора так как 50гр.-100%
X гр.- 4% отсюда x=2
И так необходимо взять 150 грамм четырёхпроцентного и 100 грамм девятипроцентного